請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17637完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文中(Wen-Jong Wu) | |
| dc.contributor.author | Jyun-Yan Zeng | en |
| dc.contributor.author | 曾俊諺 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:26:55Z | - |
| dc.date.copyright | 2013-11-05 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-11 | |
| dc.identifier.citation | [1] Boisseau S, Despesse G and Ahmed B 2012 Electrostatic Conversion for Vibration Energy Harvesting
[2] Roundy S, Wright P and Rabaey J 2003 A study of low level vibrations as a power source for wireless sensor nodes Computer Communications 26 1131-44 [3] Rao P N and Kunzru D 2007 Fabrication of microchannels on stainless steel by wet chemical etching Journal of Micromechanics and Microengineering 17 N99 [4] Chang S-P and Allen M G 2004 Capacitive pressure sensors with stainless steel diaphragm and substrate Journal of Micromechanics and Microengineering 14 612 [5] Gokdel Y D, Mutlu S and Yalcinkaya A D 2010 Self-terminating electrochemical etching of stainless steel for the fabrication of micro-mirrors Journal of Micromechanics and Microengineering 20 095009 [6] 吳朗 1994 電子陶瓷:壓電陶瓷,全欣資訊圖書股份有限公司。 [7] Jose S 1987 Multilayer Piezoelectric Actuators: User’s Manual Tokin America Corp, California [8] Wada Y and Hayakawa R 1976 Piezoelectricity and pyroelectricity of polymers Japanese Journal of Applied Physics 15 2041-57 [9] Katz H W 1959 Solid state Magnetic and Dielectric Devices Wiley, New York 94-126 [10] Boisseau S, Despesse G and Sylvestre A 2010 Optimization of an electret-based energy harvester Smart Materials and Structures 19 075015 [11] Sessler G M 1980 Electret. Berlin, Germany: Springer Verlag [12] Horikawa J and Wada T 2010 Experimental investigation on the surface potential decays of dielectric materials withq-exponential function Journal of Physics: Conference Series 201 012010 [13] Yang G M, Sessler G M and Hatke W 1999 Electret properties of cycloolefin-copolymer-polypropylene blends. In: Electrets, 1999. ISE 10. Proceedings. 10th International Symposium on, pp 317-20 [14] Abdel-Salam M, Nakano M and Mizuno A 2007 Electric fields and corona currents in needle-to-meshed plate gaps Journal of Physics D: Applied Physics 40 3363 [15] 張曉青 ,2001,矽基多層無機駐極體薄膜中平均電荷重心和密度的確定,應用科學學報 19 291。 [16] Jeon Y B, Sood R, Jeong J h and Kim S G 2005 MEMS power generator with transverse mode thin film PZT Sensors and Actuators A: Physical 122 16-22 [17] Shen D, Park J-H, Ajitsaria J, Choe S-Y, Wikle H C and Kim D-J 2008 The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting Journal of Micromechanics and Microengineering 18 055017 [18] Lee B S, Lin S C, Wu W J, Wang X Y, Chang P Z and Lee C K 2009 Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film Journal of Micromechanics and Microengineering 19 065014 [19] Roundy S, Wright P K and Rabaey J 2003 A study of low level vibrations as a power source for wireless sensor nodes Computer Communications 26 1131-44 [20] Liu H, Tay C J, Quan C, Kobayashi T and Lee C 2011 Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power Microelectromechanical Systems, Journal of 20 1131-42 [21] Liu H, Lee C, Kobayashi T, Tay C J and Quan C 2012 A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz Microsystem Technologies 18 497-506 [22] Arakawa Y, Suzuki Y and Kasagi N 2004 Micro Seismic Power Generator using Electret Polymer Film. In: PowerMEMS 2004, (Kyoto pp 187-90 [23] Tsutsumino T, Suzuki Y, Kasagi N and Sakane Y 2006 Seismic Power Generator Using High-Performance Polymer Electret. In: Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul. 19th IEEE International Conference on, pp 98-101 [24] Suzuki Y, Miki D, Edamoto M and Honzumi M 2010 A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications Journal of Micromechanics and Microengineering 20 [25] Suzuki Y and Tai Y C 2003 Micromachined High-Aspect-Ratio Parylene Beam and Its Application to Low-Frequency Seismometer. In: The Sixteenth IEEE International Conference on Micro Electro Mechanical Systems (MEMS '03), pp p. 486-9 [26] Lo H W and Tai Y C 2008 Parylene-based electret power generators Journal of Micromechanics and Microengineering 18 [27] Zhang J W and Lv Z Q 2008 A Fruit Jelly MEMS Electret Power Generator. In: PowerMEMS 2008, (Sendai, Japan [28] Yang Z H, Wang J and Zhang J W 2008 A Micro Power Generator Using PECVD SiO2/Si3N4 Double-layer as Eelctret. In: PowerMEMS 2008, (Sendai, Japan [29] Shimizu N 2008 Omron Prototypes Compact, Simple Vibration-powered Generator. Nikkei Electronics) [30] Naruse Y, Matsubara N, Mabuchi K, Izumi M and Suzuki S 2009 Electrostatic micro power generation from low-frequency vibration such as human motion Journal of Micromechanics and Microengineering 19 094002 [31] Preumont A 2006 Mechatronics: dynamics of electromechanical and piezoelectric systems vol 136: Springer) [32] 張學福、王麗坤等編 2003,現代壓電學(下),科學出版社 。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17637 | - |
| dc.description.abstract | 本論文為利用微機電製程製作二維壓電式及靜電式微型能量擷取器,另外亦研製一靜電式大結構型能量擷取器,此三種能量擷取器都可將環境之機械震動能轉換成電能輸出。而此三種能量擷取器其主要關鍵結構皆以不鏽鋼薄板作為材料,使元件能承受高加速度之振動環境,進而增加元件耐用程度及實用性。其中二維壓電式微型能量擷取器結構是以三一結構的壓電模式作為能量轉換能量的方式,此結構為上下電極包覆壓電層。另一方面,靜電式大結構及微型能量擷取器其結構主要包含上結構與下結構,上結構包含由不鏽鋼薄板製作的彈簧結構及條狀電極;下結構則以矽為基底並製作聚對二甲苯(Parylene C)作為駐極體層並在其上製作條狀金屬電極,當下結構因電暈放電使駐極體層帶有表面電壓時,而上結構擷取環境中之振動能使彈簧結構帶動條狀電極振動,造成上下結構條狀電極重疊面積改變,再外加一負載阻抗,進而能產生電能。實驗結果成功製作三種能量擷取器並進行量測及分析,其量測結果就二維壓電式微型能量擷取器而言,其元件在加速度為2.0 g、共振頻率為190.0 Hz及負載阻抗51 kΩ的環境下,可產生最大輸出功率3.0 µW;靜電式大結構能量擷取器而言,其元件在加速度為1.5 g、共振頻率為93.0 Hz及負載阻抗1.5 MΩ的環境下,可產生最大輸出功率44.0 µW。另一方面,靜電式微型能量擷取器在加速度為2.5 g、共振頻率為109.0 Hz及負載阻抗150 kΩ的環境下,可產生最大輸出功率5.0 µW。 | zh_TW |
| dc.description.abstract | In this thesis, three types energy harvesters have been developed, including two-dimensional micro piezoelectric energy harvester, large size electret energy harvester and micro electret energy harvester. To enable these three types energy harvesters to be operated under high acceleration, the stainless steel substrates are used.
The two-dimensional (2D) micro piezoelectric energy harvester is designed in d31 mode, using PZT material as the piezoelectric layer. The experimental results show that the 2D micro piezoelectric energy harvester is able to provide the output power of 3 uW under the resonance frequency of 190 Hz and the excitation level of 2 g acceleration. Both of the large size electret energy harvester and micro electret energy harvester are combined with top and bottom parts. The top structure is composed of two stainless steel springs supporting the middle collecting stripped electrode on both sides. The bottom structure is composed of a Parylene C electret layer, topped with the ground stripped electrode. Together the bottom structure is stacked on the silicon substrate. The experimental results show that the large size electret energy harvester is able to provide the output power of 44 uW under the resonance frequency of 93 Hz and the excitation level of 1.5 g acceleration. On the other hand, the experimental results show that the micro electret energy harvester is able to provide the output power of 5 uW under the resonance frequency of 109 Hz and the excitation level of 2.5 g acceleration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:26:55Z (GMT). No. of bitstreams: 1 ntu-102-R00525032-1.pdf: 5290087 bytes, checksum: 181fe4ac29aa566b80467343e9350426 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 III Abstract V 目錄 VII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究動機 1 1-2 論文架構 4 第二章 微型能量擷取器之原理與文獻回顧 5 2-1 壓電原理 5 2-1-1 壓電性質 5 2-1-2 壓電材料種類 6 2-1-3 壓電方程式 8 2-2 靜電原理 9 2-2-1 平板電容理論 9 2-2-1.1 平板帶電原理 10 2-2-1.2 靜電致動器之電壓控制原理 11 2-2-1.3 靜電吸附條件 12 2-2-2 邊際電容效應 14 2-3 駐極體材料介紹 15 2-3-1 駐極體中電荷衰減與衰減路徑 16 2-3-2 駐極體種類 16 2-3-3 電暈放電原理 17 2-4 微型能量擷取器原理與文獻回顧 19 2-4-1 壓電式微型能量擷取器 19 2-4-2 靜電式微型能量擷取器 22 2-4-2.1 CYTOP為駐極體層 24 2-4-2.2 Parylene 為駐極體層 25 2-4-2.3 SiO2為駐極體層 26 2-4-2.4 靜電式微型能量擷取器相關產品 27 2-5 靜電式能量擷取器之理論推倒 28 2-5-1 電容式麥克風理論 28 2-5-2 同平重疊面積型之靜電式能量擷取器理論 30 第三章 微型能量擷取器之結構設計 32 3-1 壓電式微型能量擷取器 32 3-1-1 設計概念 32 3-1-2 結構設計及模擬 33 3-2 靜電式大型結構能量擷取器 34 3-2-1 設計概念 34 3-2-2 上層結構設計 35 3-2-3 下層結構設計 36 3-2-4 結構共振頻率模擬 37 3-3 靜電式微型能量擷取器 38 3-2-1 設計概念 38 3-2-2 上層結構設計 39 3-2-3 下層結構設計 40 3-2-4 結構共振頻率模擬 40 第四章 微型能量擷取器之製作 42 4-1 實驗設備介紹 42 4-1-1 PZT薄膜氣膠沉積設備 42 4-1-2 駐極體薄膜沉積設備 43 4-1-2 製程設備 45 4-2 微機電製程步驟詳述 47 4-2-1 製作流程 47 4-2-1.1 光罩設計 47 4-2-1.2 黃光微影製作詳述 47 4-2-1.3 電極製作 51 4-2-1.4 蝕刻製程 53 4-3 壓電式微型能量擷取器 54 4-3-1 實驗流程 54 4-3-2 製程步驟詳述 55 4-4 靜電式大結構能量擷取器 60 4-4-1 實驗流程 60 4-4-2 製程步驟詳述 61 4-4-2.1 上結構製程步驟詳述 61 4-4-2.2 下結構製程步驟詳述 62 4-5 靜電式微型能量擷取器 65 4-5-1 實驗流程 65 4-5-2 製程步驟詳述 66 4-5-2.1 上結構製程步驟詳述 66 4-5-2.2 下結構製程步驟詳述 68 第五章 實驗結果與討論 73 5-1 壓電式微型能量擷取器 73 5-1-1 製程實驗結果 73 5-1-2 極化實驗 74 5-1-2.1 極化治具設計 75 5-1-2.2 磁滯曲線(P-E curve)量測 75 5-1-2.3 極化參數 76 5-1-2.4 極化流程 77 5-1-3 量測實驗設備架設 77 5-1-3.1 量測治具設計 77 5-1-3.2 量測電路架設 79 5-1-4 量測結果與數據分析 79 5-1-4.1 輸出電壓、輸出功率及負載阻抗關係量測 80 5-1-4.2 輸出電壓、輸出功率及加速度關係量測 81 5-2 靜電式大結構能量擷取器 82 5-2-1 製程實驗結果 82 5-2-2 下結構電暈放電實驗 83 5-2-3 量測實驗設備架設 85 5-2-3.1 量測治具設計 85 5-2-3.2 量測電路架設 86 5-2-4 量測結果與數據分析 86 5-2-4.1 輸出電壓、輸出功率及負載阻抗關係量測 86 5-2-4.3 輸出電壓、輸出功率及加速度關係量測 88 5-3 靜電式微型能量擷取器 90 5-3-1 製程實驗結果 90 5-3-2 下結構電暈放電實驗 91 5-3-3 量測實驗設備架設 92 5-3-3.1 量測治具設計 92 5-3-3.2 量測電路架設 94 5-3-4 量測結果與數據分析 94 5-3-4.1 輸出電壓、輸出功率及負載阻抗關係量測 94 5-3-4.2 輸出電壓、輸出功率及加速度關係量測 95 5-4 實驗結果討論 96 第六章 結論與未來展望 98 6-1 結論 98 6-2 未來展望 99 參考文獻 100 | |
| dc.language.iso | zh-TW | |
| dc.title | 不鏽鋼薄板應用於壓電式及靜電式之微型能量擷取器的設計及研製 | zh_TW |
| dc.title | Design and Fabrication of Micro Piezoelectric and Electrostatic Energy Harvester Based on Stainless Steel Substrates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李世光(Chih-Kung Lee),林致廷(Chih-Ting Lin),謝志文(Chih-Wen Hsieh) | |
| dc.subject.keyword | 微機電,壓電材料,駐極體,能量擷取,壓電式發電,靜電式發電,電暈放電, | zh_TW |
| dc.subject.keyword | MEMS,Piezoelectric Material,Electret,,Power Harvester,Corona Discharging, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
