請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17600
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄧哲明(Che-Ming Teng) | |
dc.contributor.author | Li-Hsun Chang | en |
dc.contributor.author | 張儷薰 | zh_TW |
dc.date.accessioned | 2021-06-08T00:24:28Z | - |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-16 | |
dc.identifier.citation | Adams, MN, Ramachandran, R, Yau, MK, Suen, JY, Fairlie, DP, Hollenberg, MD, Hooper, JD (2011) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130(3): 248-282.
Ahlbrecht, J, Dickmann, B, Ay, C, Dunkler, D, Thaler, J, Schmidinger, M, Quehenberger, P, Haitel, A, Zielinski, C, Pabinger, I (2012) Tumor grade is associated with venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 30(31): 3870-3875. Albrektsen, T, Sorensen, BB, Hjorto, GM, Fleckner, J, Rao, LV, Petersen, LC (2007) Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. J Thromb Haemost 5(8): 1588-1597. Alcalay, A, Wun, T, Khatri, V, Chew, HK, Harvey, D, Zhou, H, White, RH (2006) Venous thromboembolism in patients with colorectal cancer: incidence and effect on survival. J Clin Oncol 24(7): 1112-1118. Archiniegas, E, Neves, CY, Candelle, D, Cardier, JE (2004) Thrombin and its protease-activated receptor-1 (PAR1) participate in the endothelial-mesenchymal transdifferentiation process. DNA Cell Biol 23(12): 815-825. Baldewijns, MM, van Vlodrop, IJ, Vermeulen, PB, Soetekouw, PM, van Engeland, M, de Bruine, AP (2010) VHL and HIF signalling in renal cell carcinogenesis. J Pathol 221(2): 125-138. Black, PC, Mize, GJ, Karlin, P, Greenberg, DL, Hawley, SJ, True, LD, Vessella, RL, Takayama, TK (2007) Overexpression of protease-activated receptors-1,-2, and-4 (PAR-1, -2, and -4) in prostate cancer. Prostate 67(7): 743-756. Chang, LH, Chen, CH, Huang, DY, Pai, HC, Pan, SL, Teng, CM (2011) Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1alpha translational pathway in colorectal cancer cells. J Cell Physiol 226(4): 1060-1068. Chiang, HS, Yang, RS, Lin, SW, Huang, TF (1998) Tissue factor activity of SW-480 human colon adenocarcinoma cells is modulated by thrombin and protein kinase C activation. Br J Cancer 78(9): 1121-1127. Ciardiello, F, Tortora, G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358(11): 1160-1174. Coughlin, SR (2000) Thrombin signalling and protease-activated receptors. Nature 407(6801): 258-264. D'Andrea, MR, Derian, CK, Santulli, RJ, Andrade-Gordon, P (2001) Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am J Pathol 158(6): 2031-2041. Dang, DT, Chen, F, Gardner, LB, Cummins, JM, Rago, C, Bunz, F, Kantsevoy, SV, Dang, LH (2006) Hypoxia-inducible factor-1alpha promotes nonhypoxia-mediated proliferation in colon cancer cells and xenografts. Cancer Res 66(3): 1684-1936. Darmoul, D, Gratio, V, Devaud, H, Lehy, T, Laburthe, M (2003) Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am J Pathol 162(5): 1503-1513. Darmoul, D, Gratio, V, Devaud, H, Peiretti, F, Laburthe, M (2004) Activation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation. Mol Cancer Res 2(9): 514-522. Darmoul, D, Marie, JC, Devaud, H, Gratio, V, Laburthe, M (2001) Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2. Br J Cancer 85(5): 772-779. Denko, NC, Giaccia, AJ (2001) Tumor hypoxia, the physiological link between Trousseau's syndrome (carcinoma-induced coagulopathy) and metastasis. Cancer Res 61(3): 795-798. Diebold, I, Djordjevic, T, Hess, J, Gorlach, A (2008) Rac-1 promotes pulmonary artery smooth muscle cell proliferation by upregulation of plasminogen activator inhibitor-1: Role of NFkappaB-dependent hypoxia-inducible factor-1alpha transcription. Thromb Haemost 100(6): 1021-1028. Ding, Q, Xia, W, Liu, JC, Yang, JY, Lee, DF, Xia, J, Bartholomeusz, G, Li, Y, Pan, Y, Li, Z, Bargou, RC, Qin, J, Lai, CC, Tsai, FJ, Tsai, CH, Hung, MC (2005) Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19(2): 159-170. Dittmer, J (2003) The biology of the Ets1 proto-oncogene. Mol Cancer 2: 29. Dorfleutner, A, Hintermann, E, Tarui, T, Takada, Y, Ruf, W (2004) Cross-talk of integrin alpha3beta1 and tissue factor in cell migration. Mol Biol Cell 15(10): 4416-4425. Dutra-Oliveira, A, Monteiro, RQ, Mariano-Oliveira, A (2012) Protease-activated receptor-2 (PAR2) mediates VEGF production through the ERK1/2 pathway in human glioblastoma cell lines. Biochem Biophys Res Commun 421(2): 221-227. Esteban, MA, Bao, X, Zhuang, Q, Zhou, T, Qin, B, Pei, D (2012) The mesenchymal-to-epithelial transition in somatic cell reprogramming. Curr Opin Genet Dev 22(5): 423-428. Even-Ram, S, Uziely, B, Cohen, P, Grisaru-Granovsky, S, Maoz, M, Ginzburg, Y, Reich, R, Vlodavsky, I, Bar-Shavit, R (1998) Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 4(8): 909-914. Fielding, AB, Dedhar, S (2009) The mitotic functions of integrin-linked kinase. Cancer Metastasis Rev 28(1-2): 99-111. Geerts, WH, Bergqvist, D, Pineo, GF, Heit, JA, Samama, CM, Lassen, MR, Colwell, CW (2008) Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133(6 Suppl): 381S-453S. Gorlach, A, Diebold, I, Schini-Kerth, VB, Berchner-Pfannschmidt, U, Roth, U, Brandes, RP, Kietzmann, T, Busse, R (2001) Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox)-containing NADPH oxidase. Circ Res 89(1): 47-54. Gratio, V, Walker, F, Lehy, T, Laburthe, M, Darmoul, D (2009) Aberrant expression of proteinase-activated receptor 4 promotes colon cancer cell proliferation through a persistent signaling that involves Src and ErbB-2 kinase. Int J Cancer 124(7): 1517-1525. Gunaratnam, L, Morley, M, Franovic, A, de Paulsen, N, Mekhail, K, Parolin, DA, Nakamura, E, Lorimer, IA, Lee, S (2003) Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem 278(45): 44966-44974. Hannigan, GE, Leung-Hagesteijn, C, Fitz-Gibbon, L, Coppolino, MG, Radeva, G, Filmus, J, Bell, JC, Dedhar, S (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379(6560): 91-96. Hannigan, GE, McDonald, PC, Walsh, MP, Dedhar, S (2011) Integrin-linked kinase: not so 'pseudo' after all. Oncogene 30(43): 4375-4385. Hu, L, Roth, JM, Brooks, P, Ibrahim, S, Karpatkin, S (2008) Twist is required for thrombin-induced tumor angiogenesis and growth. Cancer Res 68(11): 4296-4302. Jiang, X, Zhu, S, Panetti, TS, Bromberg, ME (2008) Formation of tissue factor-factor VIIa-factor Xa complex induces activation of the mTOR pathway which regulates migration of human breast cancer cells. Thromb Haemost 100(1): 127-133. Kang, Y, Massague, J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118(3): 277-279. Karni, R, Dor, Y, Keshet, E, Meyuhas, O, Levitzki, A (2002) Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1alpha expression under normoxia. J Biol Chem 277(45): 42919-42925. Kaushal, V, Kohli, M, Dennis, RA, Siegel, ER, Chiles, WW, Mukunyadzi, P (2006) Thrombin receptor expression is upregulated in prostate cancer. Prostate 66(3): 273-282. Keith, B, Johnson, RS, Simon, MC (2011) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1): 9-22. Khorana, AA, Ahrendt, SA, Ryan, CK, Francis, CW, Hruban, RH, Hu, YC, Hostetter, G, Harvey, J, Taubman, MB (2007) Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 13(10): 2870-2875. Koh, MY, Powis, G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37(9): 364-372. Koizume, S, Ito, S, Miyagi, E, Hirahara, F, Nakamura, Y, Sakuma, Y, Osaka, H, Takano, Y, Ruf, W, Miyagi, Y (2012) HIF2alpha-Sp1 interaction mediates a deacetylation-dependent FVII-gene activation under hypoxic conditions in ovarian cancer cells. Nucleic Acids Res 40(12): 5389-5401. Krishnamachary, B, Berg-Dixon, S, Kelly, B, Agani, F, Feldser, D, Ferreira, G, Iyer, N, LaRusch, J, Pak, B, Taghavi, P, Semenza, GL (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5): 1138-1143. Lauw, MN, van Doormaal, FF, Middeldorp, S, Buller, HR (2013) Cancer and Venous Thrombosis: Current Comprehensions and Future Perspectives. Semin Thromb Hemost. Liu, J, Bastian, M, Kohlschein, P, Schuff-Werner, P, Steiner, M (2003) Expression of functional protease-activated receptor 1 in human prostate cancer cell lines. Urol Res 31(3): 163-168. Liu, J, Schuff-Werner, P, Steiner, M (2006a) Thrombin/thrombin receptor (PAR-1)-mediated induction of IL-8 and VEGF expression in prostate cancer cells. Biochem Biophys Res Commun 343(1): 183-189. Liu, Y, Mueller, BM (2006b) Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochem Biophys Res Commun 344(4): 1263-1270. Massi, D, Naldini, A, Ardinghi, C, Carraro, F, Franchi, A, Paglierani, M, Tarantini, F, Ketabchi, S, Cirino, G, Hollenberg, MD, Geppetti, P, Santucci, M (2005) Expression of protease-activated receptors 1 and 2 in melanocytic nevi and malignant melanoma. Hum Pathol 36(6): 676-685. McDonald, PC, Fielding, AB, Dedhar, S (2008) Integrin-linked kinase--essential roles in physiology and cancer biology. J Cell Sci 121(Pt 19): 3121-3132. Nierodzik, ML, Karpatkin, S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10(5): 355-362. Nitori, N, Ino, Y, Nakanishi, Y, Yamada, T, Honda, K, Yanagihara, K, Kosuge, T, Kanai, Y, Kitajima, M, Hirohashi, S (2005) Prognostic significance of tissue factor in pancreatic ductal adenocarcinoma. Clin Cancer Res 11(7): 2531-2539. Noble, S, Pasi, J (2010) Epidemiology and pathophysiology of cancer-associated thrombosis. Br J Cancer 102 Suppl 1: S2-9. Oettgen, P (2010) The role of ets factors in tumor angiogenesis. J Oncol 2010: 767384. Ossovskaya, VS, Bunnett, NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84(2): 579-621. Pandya, NM, Dhalla, NS, Santani, DD (2006) Angiogenesis--a new target for future therapy. Vascul Pharmacol 44(5): 265-274. Pino, MS, Shrader, M, Baker, CH, Cognetti, F, Xiong, HQ, Abbruzzese, JL, McConkey, DJ (2006) Transforming growth factor alpha expression drives constitutive epidermal growth factor receptor pathway activation and sensitivity to gefitinib (Iressa) in human pancreatic cancer cell lines. Cancer Res 66(7): 3802-3812. Ramachandran, R, Noorbakhsh, F, Defea, K, Hollenberg, MD (2012) Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 11(1): 69-86. Ramanathan, RK, Gressler, V, Shah, S, Loury, D, Hamdy, A, Khorana, AA (2011) Phase I/II study of PCI-27483, a coagulation factor VIIa (FVIIa) inhibitor in patients with advanced pancreatic cancer receiving treatment with gemcitabine. ASCO Meeting Abstracts 29(4_suppl): 221. Rankin, EB, Giaccia, AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15(4): 678-685. Richard, DE, Berra, E, Pouyssegur, J (2000) Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 275(35): 26765-26771. Rosivatz, E, Becker, I, Bamba, M, Schott, C, Diebold, J, Mayr, D, Hofler, H, Becker, KF (2004) Neoexpression of N-cadherin in E-cadherin positive colon cancers. Int J Cancer 111(5): 711-719. Sawai, H, Okada, Y, Funahashi, H, Matsuo, Y, Takahashi, H, Takeyama, H, Manabe, T (2006) Integrin-linked kinase activity is associated with interleukin-1 alpha-induced progressive behavior of pancreatic cancer and poor patient survival. Oncogene 25(23): 3237-3246. Schreiner, B, Baur, DM, Fingerle, AA, Zechner, U, Greten, FR, Adler, G, Sipos, B, Kloppel, G, Hameister, H, Schmid, RM (2003) Pattern of secondary genomic changes in pancreatic tumors of Tgf alpha/Trp53+/- transgenic mice. Genes Chromosomes Cancer 38(3): 240-248. Scirica, BM, Bonaca, MP, Braunwald, E, De Ferrari, GM, Isaza, D, Lewis, BS, Mehrhof, F, Merlini, PA, Murphy, SA, Sabatine, MS, Tendera, M, Van de Werf, F, Wilcox, R, Morrow, DA (2012) Vorapaxar for secondary prevention of thrombotic events for patients with previous myocardial infarction: a prespecified subgroup analysis of the TRA 2 degrees P-TIMI 50 trial. Lancet 380(9850): 1317-1324. Semenza, GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4): 207-214. Semenza, GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10): 721-732. Signaevsky, M, Hobbs, J, Doll, J, Liu, N, Soff, GA (2008) Role of alternatively spliced tissue factor in pancreatic cancer growth and angiogenesis. Semin Thromb Hemost 34(2): 161-169. Silini, A, Ghilardi, C, Ardinghi, C, Bernasconi, S, Oliva, P, Carraro, F, Naldini, A, Bani, MR, Giavazzi, R (2010) Protease-activated receptor-1 (PAR-1) promotes the motility of human melanomas and is associated to their metastatic phenotype. Clin Exp Metastasis 27(1): 43-53. Snyder, KM, Kessler, CM (2008) The pivotal role of thrombin in cancer biology and tumorigenesis. Semin Thromb Hemost 34(8): 734-741. Suen, JY, Gardiner, B, Grimmond, S, Fairlie, DP (2010) Profiling gene expression induced by protease-activated receptor 2 (PAR2) activation in human kidney cells. PLoS One 5(11): e13809. Svensson, KJ, Kucharzewska, P, Christianson, HC, Skold, S, Lofstedt, T, Johansson, MC, Morgelin, M, Bengzon, J, Ruf, W, Belting, M (2011) Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci U S A 108(32): 13147-13152. Tan, C, Cruet-Hennequart, S, Troussard, A, Fazli, L, Costello, P, Sutton, K, Wheeler, J, Gleave, M, Sanghera, J, Dedhar, S (2004) Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell 5(1): 79-90. Tanaka, T, Nangaku, M (2013) Angiogenesis and hypoxia in the kidney. Nat Rev Nephrol 9(4): 211-222. Tellez, C, Bar-Eli, M (2003) Role and regulation of the thrombin receptor (PAR-1) in human melanoma. Oncogene 22(20): 3130-3137. Thiery, JP, Sleeman, JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2): 131-142. Thompson, EW, Haviv, I (2011) The social aspects of EMT-MET plasticity. Nat Med 17(9): 1048-1049. Valdes-Mora, F, Gomez del Pulgar, T, Bandres, E, Cejas, P, Ramirez de Molina, A, Perez-Palacios, R, Gallego-Ortega, D, Garcia-Cabezas, MA, Casado, E, Larrauri, J, Nistal, M, Gonzalez-Baron, M, Garcia-Foncillas, J, Lacal, JC (2009) TWIST1 overexpression is associated with nodal invasion and male sex in primary colorectal cancer. Ann Surg Oncol 16(1): 78-87. van den Berg, YW, Osanto, S, Reitsma, PH, Versteeg, HH (2012) The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 119(4): 924-932. Varki, A (2007) Trousseau's syndrome: multiple definitions and multiple mechanisms. Blood 110(6): 1723-1729. Villares, GJ, Zigler, M, Wang, H, Melnikova, VO, Wu, H, Friedman, R, Leslie, MC, Vivas-Mejia, PE, Lopez-Berestein, G, Sood, AK, Bar-Eli, M (2008) Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res 68(21): 9078-9086. Weis, SM, Cheresh, DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11): 1359-1370. Wun, T, White, RH (2009) Venous thromboembolism (VTE) in patients with cancer: epidemiology and risk factors. Cancer Invest 27 Suppl 1: 63-74. Yada, K, Shibata, K, Matsumoto, T, Ohta, M, Yokoyama, S, Kitano, S (2005) Protease-activated receptor-2 regulates cell proliferation and enhances cyclooxygenase-2 mRNA expression in human pancreatic cancer cells. J Surg Oncol 89(2): 79-85. Yang, J, Mani, SA, Donaher, JL, Ramaswamy, S, Itzykson, RA, Come, C, Savagner, P, Gitelman, I, Richardson, A, Weinberg, RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7): 927-939. Yang, MH, Wu, MZ, Chiou, SH, Chen, PM, Chang, SY, Liu, CJ, Teng, SC, Wu, KJ (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3): 295-305. Young, A, Chapman, O, Connor, C, Poole, C, Rose, P, Kakkar, AK (2012) Thrombosis and cancer. Nat Rev Clin Oncol 9(8): 437-449. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17600 | - |
dc.description.abstract | 癌症已連續十年蟬聯十大死因之首,而因癌症所引起之併發症亦可能是導致癌症致死之因素,其中以靜脈血栓炎最為常見。自1865年,法國醫生Armand Trousseau發現反覆性產生靜脈血栓栓塞的病人,其後不久會被診斷出罹患惡性腫瘤,因此將癌症所引起之血栓症命名為Trousseau syndrome,自此開啟了血栓與癌症關聯性的研究。
本論文第一部分的研究中,我們探討凝血酶Thrombin 透過活化蛋白酶激活接受器Protease-activated receptors (PARs) 造成癌症轉移的機轉。在大腸直腸癌細胞實驗中,Thrombin 以及專一性PAR-1之activating peptides (APs) 可以引起缺氧誘導因子hypoxia-inducible factor-1α (HIF-1α) 蛋白之累積、增加HIF-1α轉錄能力、下游蛋白Twist表現以及細胞移行能力;然而,PAR-4 AP則無此作用。給予PAR-1抑制劑SCH79797或轉譯路徑相關抑制劑:如ERK、PI3K/Akt或mTOR抑制劑,則可以阻斷Thrombin以及PAR-1 AP之作用。此外,我們還進一步證實Thrombin藉由Twist增加N-cadherin調控epithelial-mesenchymal transition (EMT),進而調控癌細胞移行能力。 第二部分的研究則是證實在過度表現組織凝血因子tissue factor (TF)之胰臟癌細胞中,活化PAR-2會造成癌細胞增加HIFs蛋白,transforming growth factor-α (TGF-α) 表現,以及促進血管新生。不論是給予FVIIa或是PAR-2 AP,活化PAR-2之後HIF-1α以及HIF-2α蛋白皆會累積,TGF-α以及vascular endothelial growth factor-A (VEGF-A) 之轉錄和轉譯作用皆有增加。藉由small interfering RNA (siRNA) 減少integrin-linked kinase (ILK)、HIF-1α或HIF-2α皆可以抑制PAR-2誘導之TGF-α蛋白增加,然而卻無法減少PAR-2誘導之VEGF-A蛋白。於是藉由microarray分析PAR-2所影響之訊息路徑,我們發現PAR-2會活化MEK-ERK路徑、轉錄因子EST-1以及VEGF-A蛋白。給予MEK抑制劑之後,可以大幅降低PAR-2增加之VEGF-A蛋白以及抑制VEGF誘導之血管內皮細胞增生和移行,阻斷了血管新生之形成。 經由以上結果得知不正常表現凝血因子如Thrombin或是TF,會活化癌細胞表面上之PARs以及增加轉錄因子HIFs之活性,最終促使癌症之進程、血管新生以及轉移,而PARs則扮演一個連結癌症與血栓交互作用的角色。 | zh_TW |
dc.description.abstract | Cancer is the top one leading cause of death over ten years and cancer-related complications are also the reasons of death. Venous thromboembolism (VTE) is a common complication in cancer patients. Since 1865, Armand Trousseau has discovered the clinical phenomena in patients with recurrent VTE. These patients were subsequently diagnosed with advanced cancer. Therefore, deep vein thrombosis associated with advanced cancer is known as Trousseau’s syndrome. Until now, many researchers have been interested in exploring the association between cancer and thrombosis.
In the first part of study, we hypothesized that thrombin has an effect on tumor metastasis through activation of PARs. We demonstrated that thrombin and the PAR-1 activating peptide (AP) SFLLRN, but not the PAR-4 AP GYPGKF, induced HIF-1α activities, protein expression, upregulation of Twist and cell motility in colorectal cancer cells, and these actions were significantly inhibited by the PAR-1 antagonist SCH79797, translation pathway inhibitors, including the ERK, PI3K, and mTOR inhibitors. Moreover, thrombin-mediated Twist regulated epithelial–mesenchymal transition (EMT) by increase of N-cadherin to promote cell motility. The aim of the second study was to investigate the activation of PAR-2-increased HIFs-α, transforming growth factor-α (TGF-α) and angiogenesis in pancreatic cancer with overexpression of tissue factor (TF). PAR-2 signaling activated by FVIIa or PAR-2 AP induced accumulation of HIF-1α as well as HIF-2α. Furthermore, PAR-2 signaling increased transcription and translation of TGF-α as well as VEGF. Using small interfering RNA (siRNA) assay, depletion of integrin-linked kinase (ILK), HIF-1α or HIF-2α abolished the activated PAR-2-mediated TGF-α but not VEGF-A. According to microarray analysis, PAR-2 signaling enhanced MEK-ERK pathway, transcriptional factor ETS-1 and VEGF-A. Therefore, PAR-2-induced VEGF-A enhanced endothelial cell proliferation and tube formation, which were blocked by the MEK inhibitor. In summary, our thesis demonstrates that aberrant coagulant factors, such as thrombin or TF, may promote cancer progression, angiogenesis and metastasis through a PARs signaling-mediated HIFs activity. PARs play an important role in the crosstalk with cancer-related thrombosis and cancer progression. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:24:28Z (GMT). No. of bitstreams: 1 ntu-102-F95443005-1.pdf: 10512250 bytes, checksum: fae889df65de180487f213b07d2b65ed (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書............................................I
誌謝......................................................II 縮寫表...................................................III 中文摘要...................................................V Abstract................................................VII Chapter I:Introduction Relationship between cancer and thrombosis.................1 Protease-activated receptors (PARs)-mediated cancer progression................................................2 Role of hypoxia-inducible factors (HIFs) in cancers........4 Epithelial-mesenchymal transition (EMT) and metastasis.....6 Tumor angiogenesis.........................................8 Aims of researches.........................................9 Chapter II:Thrombin induces expression of Twist and cell motility via the hypoxia-inducible factor-1α translational pathway in colorectal cancer cells 26 Chapter III:Activated PAR-2 regulates pancreatic cancer progression through ILK/HIF-α-induced TGF-α expression and MEK/VEGF-A-mediated angiogenesis..........................65 Chapter IV:Conclusion and perspective...................101 參考文獻 (References).....................................106 著作 (Publication).......................................115 | |
dc.language.iso | en | |
dc.title | Protease-activated receptors (PARs) 調控癌症進程之機轉探討 | zh_TW |
dc.title | The mechanism of cancer progression regulated by protease-activated receptors (PARs) | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 潘秀玲(Shiow-Lin Pan) | |
dc.contributor.oralexamcommittee | 楊春茂,顏茂雄,黃德富 | |
dc.subject.keyword | 蛋白?激活接受器,缺氧誘導因子,癌症進程,凝血酶,組織凝血因子, | zh_TW |
dc.subject.keyword | PARs,HIFs,cancer progression,Thrombin,Tissue factor (TF), | en |
dc.relation.page | 115 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-07-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 10.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。