Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17577
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧記華(Jih-Hwa Guh)
dc.contributor.authorChia-Chun Yuen
dc.contributor.author余佳純zh_TW
dc.date.accessioned2021-06-08T00:22:38Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-07-18
dc.identifier.citation1. Hidalgo, M. Pancreatic cancer. N Engl J Med 2010, 362, 1605-17.
2. Haglund, C.; Roberts, P. J.; Kuusela, P.; Scheinin, T. M.; Makela, O.; Jalanko, H. Evaluation of CA 19-9 as a serum tumour marker in pancreatic cancer. Br J Cancer 1986, 53, 197-202.
3. Haglund, C.; Kuusela, P.; Roberts, P. J. Tumour markers in pancreatic cancer. Ann Chir Gynaecol 1989, 78, 41-53.
4. Canto, M. I.; Goggins, M.; Yeo, C. J.; Griffin, C.; Axilbund, J. E.; Brune, K.; Ali, S. Z.; Jagannath, S.; Petersen, G. M.; Fishman, E. K.; Piantadosi, S.; Giardiello, F. M.; Hruban, R. H. Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol 2004, 2, 606-621.
5. Whipple, A. O.; Parsons, W. B.; Mullins, C. R. Treatment of carcinoma of the ampulla of vater. Ann Surg 1935, 102, 763-779.
6. Neoptolemos, J.; Buchler, M.; Stocken, D. D.; Ghaneh, P.; Smith, D.; Bassi, C.; Moore, M.; Cunningham, D.; Dervenis, C.; Goldstein, D. A multicenter, international, openlabel, randomized, controlled phase III trial of adjuvant 5-fluorouracil/folinic acid (5-FU/FA) versus gemcitabine (GEM) in patients with resected pancreatic ductal adenocarcinoma. J Clin Oncol 2009, 27(18S).
7. NanoCarrier. NC-6004(Nanoplatin) and gemcitabine to treat pancreatic cancer in Asia. U.S. National Institutes of Health 2009, Clinical Trial 295909.
8. Nelson, W. G.; Marzo, A. M. D.; Isaacs, W. B. Prostate cancer. N Engl J Med 2003, 349, 366-381.
9. Wolf, A. M.; Wender, R. C.; Etzioni, R. B.; Thompson, I. M.; D'Amico, A. V.; Volk, R. J.; Brooks, D. D.; Dash, C.; Guessous, I.; Andrews, K.; DeSantis, C.; Smith, R. A. American cancer society guideline for the early detection of prostate cancer. CA Cancer J Clin 2010, 60, 70-98.
10. Chang, S. S. Treatment option for hormone-refractory prostate cancer. Rev Urol 2007, 9, S13-S18.
11. Paller, C. J.; Antonarakis, E. S. Cabazitaxel: a novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des Devel Ther 2011, 5, 117-124.
12. Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990, 82, 1107-12.
13. Fitzgerald, J. B.; Schoeberl, B.; Nielsen, U. B.; Sorger, P. K. Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2006, 2, 458-466.
14. Vermeulen, K.; Bockstaele, D. R. V.; Berneman, Z. N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003, 36, 131-149.
15. Morgan, D. O. Principles of CDK regulation. Nature 1995, 374, 131-134.
16. Koepp, D. M.; Harper, J. W.; Elledge, S. J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 1999, 97, 431-434.
17. Sherr, C. J. Mammalian G1 cyclins. Cell 1993, 73, 1059-65.
18. Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 2009, 8, 547-566.
19. Vidal, A.; Koff, A. Cell-cycle inhibitors: three families united by a common cause. Gene 2000, 247, 1-15.
20. Sherr, C. J.; Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999, 13, 1501-12.
21. Chan, F. K. M.; Zhang, J.; Cheng, L.; Shapiro, D. N.; Winoto, A. Identification of human and mouse p19,a noval CDK4 and CDK6 inhibitor with homology to p16ink4. Mol Cell Biol 1995, 15, 2682-88.
22. Guan, K. L.; Jenkins, C. W.; Li, Y.; Nichols, M. A.; Wu, X.; O'Keefe, C. L.; Matera, A. G.; Xiong, Y. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 1994, 8, 2939-52.
23. Hirai, H.; Roussel, M. F.; Kato, J. Y.; Ashmun, R. A.; Sherr, C. J. Novel INK4 protein, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 1995, 15, 2672-81.
24. Xiong, Y.; Hannon, G. J.; Zhang, H.; Casso, D.; Kobayashi, R.; Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature 1993, 366, 701-704.
25. Denicourt, C.; Dowdy, S. F. Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev 2004, 18, 851-855.
26. Harper, J. W.; Elledge, S. J.; Keyomarsi, K.; Dynlacht, B.; Tsai, L. H.; Zhang, P.; Dobrowolski, S.; Bai, C.; Connell-Crowley, L.; Swindell, E.; Fox, M. P.; Wei, N. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 1995, 6, 387-400.
27. Harper, J. W.; Adami, G. R.; Wei, N.; Keyimarsi, K.; Elledge, S. J. The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993, 75, 805-816.
28. Cheng, M.; Olivier, P.; Diehl, J. A.; Fero, M.; Roussel, M. F.; Roberts, J. M.; Sherr, C. J. The p21Cip1 and p27Kip1 CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999, 18, 1571-83.
29. Russo, A. A.; Jeffrey, P. D.; Patten, A. K.; Massague, J.; Pavletich, N. P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 1996, 382, 325-331.
30. Elledge, S. J.; Winston, J.; Harper, J. W. A question of balance: the role of cyclinkinase inhibitors in development and tumorigenesis. Trends Cell Biol 1996, 6, 388-392.
31. Sherr, C. J.; Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995, 9, 1149-63.
32. Polyak, K.; Kato, J. y.; Solomon, M. J.; Sherr, C. J.; Massague, J.; Roberts, J. M.; Koff, A. p27Kip1, a cyclin-cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev 1994, 8, 9-22.
33. Sgambato, A.; Cittadini, A.; Faraglia, B.; Weinstein, I. B. Multiple functions of p27Kip1 and its alterations in tumor cells: a review. J Cell Physiol 2000, 183, 18-27.
34. Matsuoka, S.; Edwards, M. C.; Bai, C.; Parker, S.; Zhang, P.; Baldini, A.; Harper, J. W.; Elledge, S. J. p57KIP2, a structurally distinct member of the p21CIP1 cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995, 9, 650-662.
35. Bilodeau, S.; Roussel-Gervais, A.; Drouin, J. Distinct Developmental Roles of Cell Cycle Inhibitors p57Kip2 and p27Kip1 Distinguish Pituitary Progenitor Cell Cycle Exit from Cell Cycle Reentry of Differentiated Cells. Mol Cell Biol 2009, 29, 1895-1908.
36. Joaquin, M.; Gubern, A.; Gonzalez-Nunez, D.; Ruiz, E. J.; Ferreiro, I.; Nadal, E. d.; Nebreda, A. R.; Posas, F. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J 2012, 31, 2952-64.
37. Kastan, M. B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature 2004, 432, 316-323.
38. Stewart, G. S.; Wang, B.; Bignell, C. R.; Taylor, A. M. R.; Elledge, S. J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003, 421, 961-966.
39. Shangary, S.; Johnson, D. E. Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-x(L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry 2002, 41, 9485-95.
40. Li, S.; Zhao, Y.; He, X.; Kim, T. H.; Kuharsky, D. K.; Rabinowich, H.; Chen, J.; Du, C.; Yin, X. M. Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 2002, 277, 26912-20.
41. Moreau, C.; Cartron, P. F.; Hunt, A.; Meflah, K.; Green, D. R.; Evan, G.; Vallette, F. M.; Juin, P. Minimal BH3 peptides promote cell death by antagonizing anti-apoptotic proteins. J Biol Chem 2003, 278, 19426-35.
42. Reed, J. C. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994, 124, 1-6.
43. Gottlieb, E.; Heiden, M. G. V.; Thompson, C. B. Bcl-xL prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 2000, 20, 5680-89.
44. Oltvai, Z. N.; Milkman, C. L.; Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74, 609-619.
45. Ruiz, G. M.; Maldonado, V.; Cancino, G. C.; Grajeda, J. P.; Zajgla, J. M. Role of Smac/DIABLO in cancer progression. J Exp Clin Cancer Res 2008, 27, 48.
46. Vezina, C.; Kudelski, A.; Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975, 28, 721-726.
47. Heitman, J.; Movva, N. R.; Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991, 253, 905-909.
48. Brown, E. J.; Alberts, M. W.; Shin, T. B.; Ichikawa, K.; Keith, C. T.; Lane, W. S.; Schreiber, S. L. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994, 369, 756-758.
49. Jr, W. J. T.; Saghir, A. N.; Spruill, L. S.; Menick, D. R.; McDermott, P. J. Regulation of protein synthesis by eIF4E phosphorylation in adult cardiocytes: the consequence of secondary structure in the 5'-untranslated region of mRNA. Biochem J 2004, 378, 73-82.
50. Karatzas, A. L.; Montine, K. S.; Soneberg, N. Malignant transformation by a eukaryotic translation initiation factor subunit that binds to mRNA cap. Nature 1990, 345, 544-547.
51. Zoncu, R.; Efeyan, A.; Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011, 12, 21-35.
52. Huang, W.; Zhu, P. J.; Zhang, S.; Zhou, H.; Stoica, L.; Galiano, M.; Krnjević, K.; Roman, G.; Mattioli, M. C. mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 2013, 16, 441-448.
53. Gangloff, Y. G.; Mueller, M.; Dann, S. G.; Svoboda, P.; Sticker, M.; Spetz, J. F.; Um, S. H.; Brown, E. J.; Cereghini, S.; Thomas, G.; Kozma, S. C. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 2004, 24, 9508-16.
54. Huang, S.; Houghton, P. J. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 2003, 3, 371-377.
55. Bjornsti, M. A.; Houghton, P. J. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004, 4, 335-348.
56. Hayflick, L. The limited in vito lifetime of human diploid cell strains. Exp Cell Res 1965, 37, 614-636.
57. Shay, J. W.; Wright, W. E. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 2000, 1, 72-76.
58. Moyzis, R. K.; Buckingham, J. M.; Cram, L. S.; Dani, M.; Deaven, L. L.; Jones, M. D.; Meyne, J.; Ratliff, R. L.; Wu, J. R. A highly conserved repetitive DNA sequence (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988, 85, 6622-26.
59. Greider, C. W.; Blackburn, E. H. Identification of a specific telomere terminal transferase enzyme with two kinds of primer specificity. Cell 1985, 51, 405-413.
60. Morin, G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 1989, 59, 521-529.
61. Kim, N. W.; Piatyszek, M. A.; Prowse, K. R.; Harley, C. B.; West, M. D.; Ho, P. L. C.; Coviello, G. M.; Wright, W. E.; Weinrich, S. L.; Shay, J. W. Specific association of human telomerase activity with immortal cells and cancer. Science 1994, 266, 2011-15.
62. Avilion, A. A.; Piatyszek, M. A.; Gupta, J.; Shay, J. W.; Bacchetti, S.; Greider, C. W. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res 1996, 56, 645-650.
63. Chen, C. H.; Chen, R. J. Prevalence of telomerase activity in human cancer. J Formos Med Assoc 2011, 110, 275-289.
64. Campisi, J.; Fagagna, F. d. A. d. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007, 8, 729-740.
65. Gil, J.; Peters, G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 2006, 7, 667-677.
66. Ogryzko, V. V.; Hirai, T. H.; Russanova, V. R.; Barbie, D. A.; Howard, B. H. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol 1996, 16, 5210-18.
67. te Poele, R. H.; Okorokov, A. L.; Jardine, L.; Cummings, J.; Joel, S. P. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 2002, 62, 1876-83.
68. Rubinsztein, D. C.; Gestwicki, J. E.; Murphy, L. O.; Klionsky, D. J. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007, 6, 304-312.
69. Marino, G.; Otin, C. L. Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 2004, 61, 1439-54.
70. Levine, B.; Klionsky, D. J. Development by Self-Digestion: Molecular Mechanisms and Biological Functions of Autophagy. Dev Cell 2004, 6, 463-477.
71. Maiuri, M. C.; Galluzzi, L.; Vicencio, J. M.; Kepp, O.; Tasdemir, E.; Kroemer, G. To die or not to die: that is the autophagic question. Curr Mol Med 2008, 8, 78-91.
72. Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell 2008, 132, 27-42.
73. Vicencio, J. M.; Galluzzi, L.; Tajeddine, N.; Ortiz, C.; Criollo, A.; Tasdemir, E.; Morselli, E.; Younes, A. B.; Maiuri, M. C.; Lavandero, S.; Kroemer, G. Senescence, apoptosis or autophagy? When a damaged cell must decide its path--a mini-review. Gerontology 2008, 54, 92-99.
74. Parry, D.; Mahony, D.; Wills, K.; Lees, E. Cyclin D-CDK Subunit Arrangement Is Dependent on the Availability of Competing INK4 and p21 Class Inhibitors. Mol Cell Biol 1999, 19, 1775-83.
75. Bivona, T. G.; Quatela, S. E.; Bodemann, B. O.; Ahearn, I. M.; Soskis, M. J.; Mor, A.; Miura, J.; Wiener, H. H.; Wright, L.; Saba, S. G.; Yim, D.; Fein, A.; Castro, I. P. d.; Li, C.; Thompson, C. B.; Cox, A. D.; Philips, M. R. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 2006, 21, 481-493.
76. Nave, B. T.; Ouwens, D. M.; Withers, D. J.; Alessi, D. R.; Shepherd, P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999, 344, 427-431.
77. Memmott, R. M.; Dennis, P. A. Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal 2009, 21, 656-664.
78. Bardeesy, N.; DePinho, R. A. Pancreatic cancer biology and genetics. Nat Rev Cancer 2002, 2, 897-909.
79. Georgieva, M.; Krasteva, M.; Angelova, E.; Ralchev, K.; Dimitrov, V.; Bozhimirov, S.; Georgieva, E.; Berger, M. R. Analysis of the K-ras/B-raf/Erk signal cascade, p53 and CMAP as markers for tumor progression in colorectal cancer patients. Oncol Rep 2008, 20, 3-11.
80. Bihani, T.; Mason, D. X.; Jackson, T. J.; Chen, S. C.; Boettner, B.; Lin, A. W. Differential oncogenic Ras signaling and senescence in tumor cells. Cell Cycle 2004, 3, 1201-07.
81. Kerr, J. F. R.; Wyllie, A. H.; Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26, 239-257.
82. Mattson, M. P. Apoptosis and neurodegenerative disorders. Nat Rev Mol Cell Biol 2000, 1, 120-129.
83. Papoff, G.; Hausler, P.; Eramo, A.; Pagano, M. G.; Leve, G. D.; Signore, A.; Ruberti, G. Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J Biol Chem 1999, 274, 38241-50.
84. Mollinedo, F.; Gajate, C. Fas/CD95 death receptor and lipid rafts: New targets for apoptosis-directed cancer therapy. Drug Resist Updat 2006, 9, 51-73.
85. Nagata, S. Biddable death. Nat Cell Biol 1999, 1, E143-E145.
86. Hengartner, M. O. The biochemistry of apoptosis. Nature 2000, 407, 770-776.
87. Ellis, H. M.; Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986, 44, 817-829.
88. Slee, E. A.; Harte, M. T.; Kluck, R. M.; Wolf, B. B.; Casiano, C. A.; Newmeyer, D. D.; Wang, H. G.; Reed, J. C.; Nicholson, D. W.; Alnemri, E. S.; Green, D. R.; Martin, S. J. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 1999, 144, 281-292.
89. Ho, P. K.; Hawkins, C. J. Mammalian initiator apoptotic caspases. FEBS J 2005, 272, 5436-53.
90. Cohen, G. M. Caspases: the executioners of apoptosis. Biochem J 1997, 326, 1-16.
91. Earnshaw, W. C.; Martins, L. M.; Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999, 68, 383-424.
92. Utz, P. J.; Anderson, P. Life and death decisions: regulation of apoptosis by proteolysis of signaling molecules. Cell Death Differ 2000, 7, 589-602.
93. Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002, 9, 459-470.
94. Degterev, A.; Boyce, M.; Yuan, J. A decade of caspases. Oncogene 2003, 22, 8543-67.
95. Deveraux, Q. L.; Reed, J. C. IAP family proteins--suppressors of apoptosis. Genes Dev 1999, 13, 239-252.
96. Shi, Y. Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci 2004, 13, 1979-87.
97. Miller, L. K. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol 1999, 9, 323-328.
98. Vaux, D. L.; Silke, J. IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 2005, 6, 287-297.
99. Silke, J.; Kratina, T.; Chu, D.; Ekert, P. G.; Day, C. L.; Pakusch, M.; Huang, D. C. S.; Vaux, D. L. Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance. Proc Natl Acad Sci USA 2005, 102, 16182-87.
100. Wei, Y.; Fan, T.; Yu, M. Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin 2008, 40, 278-288.
101. Shiozaki, E. N.; Chai, J.; Rigotti, D. J.; Riedl, S. J.; Li, P.; Srinivasula, S. M.; Alnemri, E. S.; Fairman, R.; Shi, Y. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003, 11, 510-527.
102. Srinivasula, S. M.; Hegde, R.; Saleh, A.; Datta, P.; Shiozaki, E.; Chai, J.; Lee, R.-A.; Robbins, P. D.; Alnemri, T. F.; Shi, Y.; Alnemri, E. S. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001, 410, 112-116.
103. Riedl, S. J.; Renatus, M.; Schwarzenbacher, R.; Zhou, Q.; Sun, C.; Fesik, S.; Liddington, R. C.; Salveen, G. S. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001, 104, 791-800.
104. Huang, Y.; Park, Y. C.; Rich, R. L.; Segal, D.; Myszka, D. G.; Wu, H. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 2001, 104, 781-790.
105. Suzuki, Y.; Nakabayashi, Y.; Nakata, K.; Reed, J. C.; Takahashi, R. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem 2001, 276, 27058-63.
106. Sanna, M. G.; Correia, J. d. S.; Ducrey, O.; Lee, J.; Nomoto, K.; Schrantz, N.; Deveraux, Q. L.; Ulevitch, R. J. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol 2002, 22, 1754-66.
107. Luong, L. A.; Evans, P. C. Targeting inhibitor of apoptosis proteins to block vascular inflammation. Arterioscler Thromb Vasc Biol 2011, 31, 2165-66.
108. Reffey, S. B.; Wurthner, J. U.; Parks, W. T.; Roberts, A. B.; Duckett, C. S. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J Biol Chem 2001, 276, 26542-49.
109. Zhao, Y.; Conze, D. B.; Hanover, J. A.; Ashwell, J. D. Tumor necrosis factor receptor 2 signaling induces selective c-IAP1-dependent ASK1 ubiquitination and terminates mitogen-activated protein kinase signaling. J Biol Chem 2007, 282, 7777-82.
110. Xu, L.; Zhu, J.; Hu, X.; Zhu, H.; Kim, H. T.; LaBaer, J.; Goldberg, A.; Yuan, J. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol Cell 2007, 28, 914-922.
111. Asselin, E.; Mills, G. B.; Tsang, B. K. XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res 2001, 61, 1862-68.
112. Ambrosini, G.; Adida, C.; Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997, 3, 917-921.
113. Altieri, D. C.; Marchisio, P. C. Survivin apoptosis: an interloper between cell death and cell proliferation in cancer. Lab Invest 1999, 79, 1327-33.
114. McEleny, K. R.; Watson, R. W. G.; Coffey, R. N. T.; Fitzpatrick, A. J. O. N. J. M. Inhibitors of apoptosis proteins in prostate cancer cell lines. Prostate 2002, 51, 133-140.
115. de Almagro, M. C.; Vucic, D. The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol 2012, 34, 200-211.
116. Uren, A. G.; Wong, L.; Pakusch, M.; Fowler, K. J.; Burrows, F. J.; Vaux, D. L.; Choo, K. H. A. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol 2000, 10, 1319-28.
117. O'Connor, D. S.; Grossman, D.; Plescia, J.; Li, F.; Zhang, H.; Villa, A.; Tognin, S.; Marchisio, P. C.; Altieri, D. C. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci USA 2000, 97, 13103-107.
118. Altieri, D. C. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 2001, 7, 542-547.
119. Harman, D. Aging: a theory based on free-radical and radiation-chemistry. J Gerontol 1956, 11, 298-300.
120. Lander, H. M. An essential role for free radicals and derived species in signal transduction. FASEB J 1997, 11, 118-124.
121. Bae, Y. S.; Oh, H.; Rhee, S. G.; Yoo, Y. D. Regulation of reactive oxygen species generation in cell signaling. Mol Cells 2011, 32, 491-509.
122. Mannaerts, G. P.; Veldhoven, P. P. V. Metabolic pathways in mammalian peroxisomes. Biochimie 1993, 75, 147-158.
123. Bondy, S. C.; Naderi, S. Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochem Pharmacol 1994, 48, 155-159.
124. Richter, C.; Gogvadze, V.; Laffranchi, R.; Schlapbach, R.; Schweizer, M.; Suter, M.; Walter, P.; Yaffee, M. Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1995, 1271, 67-74.
125. Dugan, L. L.; Sensi, S. L.; Canzoniero, L. M.; Handran, S. D.; Rothman, S. M.; Lin, T. S.; Goldberg, M. P.; Choi, D. W. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 1995, 15, 6377-88.
126. Thannickal, V. J.; Fanburg, B. L. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000, 279, L1005-28.
127. Mielke, K.; Damm, A.; Yang, D. D.; Herdegen, T. Selective expression of JNK isoforms and stress-specific JNK activity in different neural cell lines. Brain Res Mol Brain Res 2000, 75, 128-137.
128. Wang, X.; Martindale, J. L.; Liu, Y.; Holbrook, N. J. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 1998, 333, 291-300.
129. Zhang, K.; Kaufman, R. J. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 2004, 279, 25935-38.
130. Lai, E.; Teodoro, T.; Volchuk, A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 2007, 22, 193-201.
131. Harding, H. P.; Zhang, Y.; Bertolotti, A.; Zeng, H.; Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000, 5, 897-904.
132. Mori, K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000, 101, 451-454.
133. Kaufman, R. J. Orchestrating the unfolded protein response in health and disease. J Clin Invest 2002, 110, 1389-98.
134. Ma, Y.; Brewer, J. W.; Diehl, J. A.; Hendershot, L. M. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 2002, 318, 1351-65.
135. Rao, R. V.; Castro-Obregon, S.; Frankowski, H.; Schuler, M.; Stoka, V.; Rio, G. d.; Bredesen, D. E.; Ellerby, H. M. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 2002, 277, 21836-42.
136. Nakagawa, T.; Zhu, H.; Morishima, N.; Li, E.; Xu, J.; Yankner, B. A.; Yuan, J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000, 403, 98-103.
137. Filippin, L.; Magalhaes, P. J.; Benedetto, G. D.; Colella, M.; Pozzan, T. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 2003, 278, 39224-34.
138. Kaestner, K. H.; Knochel, W.; Martinez, D. E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 2000, 14, 142-146.
139. Huang, H.; Tindall, D. J. Dynamic FoxO transcription factors. J Cell Sci 2007, 120, 2479-87.
140. Tran, H.; Brunet, A.; Griffith, E. C.; Greenberg, M. E. The many forks in FOXO's road. Sci STKE 2003, 2003, RE5.
141. Fu, Z.; Tindall, D. FOXOs, cancer and regulation of apoptosis. Oncogene 2008, 27, 2312-19.
142. Maiese, K.; Chong, Z. Z.; Shang, Y. C.; Hou, J. A 'FOXO' in sight: targeting Foxo proteins from conception to cancer. Med Res Rev 2009, 29, 395-418.
143. Weidinger, C.; Krause, K.; Klagge, A.; Karger, S.; Fuhrer, D. Forkhead box-O transcription factor: critical conductors of cancer's fate. Endocr Relat Cancer 2008, 15, 917-929.
144. Polter, A.; Yang, S.; Zmijewska, A. A.; Groen, T. v.; Paik, J. H.; DePinho, R. A.; Peng, S. L.; Jope, R. S.; Li, X. Forkhead box, class O transcription factors in brain: regulation and behavioral manifestation. Biol Psychiatry 2009, 65, 150-159.
145. Kortylewski, M.; Feld, F.; Kruger, K. D.; Bahrenberg, G.; Roth, R. A.; Joost, H.-G.; Heinrich, P. C.; Behrmann, I.; Barthel, A. Akt Modulates STAT3-mediated Gene Expression through a FKHR (FOXO1a)-dependent Mechanism. J Biol Chem 2003, 278, 5242-49.
146. Heide, L. P. V. D.; Hoekman, M. F. M.; Smidt, M. P. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004, 380, 297-309.
147. Heide, L. P. v. d.; Jacobs, F. M. J.; Burbach, J. P. H.; Hoekman, M. F. M.; Smidt, M. P. FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. Biochem J 2005, 391, 623-629.
148. Roy, S. K.; Srivastava, R. K.; Shankar, S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal 2010, 5, p.1-13.
149. Zhang, X.; Tang, N.; Hadden, T. J.; Rishi, A. K. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 2011, 1813, 1978-86.
150. Ola, M. S.; Nawaz, M.; Ahsan, H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 2011, 351, 41-58.
151. Lakshminarasimhan, M.; Steegborn, C. Emerging mitochondrial signaling mechanisms in physiology, aging processes, and as drug targets. Exp Gerontol 2011, 46, 174-177.
152. Fulda, S.; Kroemer, G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today 2009, 14, 885-890.
153. Leber, B.; Geng, F.; Kale, J.; Andrews, D. W. Drugs targeting Bcl-2 family members as an emerging strategy in cancer. Expert Rev Mol Med 2010, 12, e28.
154. Salvesen, G. S.; Duckett, C. S. Apoptosis: IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002, 3, 401-410.
155. Altieri, D. C. Survivin and IAP proteins in cell-death mechanisms. Biochem J 2010, 430, 199-205.
156. Ceballos-Cancino, G.; Espinosa, M.; Maldonado, V.; Zajgla, J. M. Regulation of mitochondrial Smac/DIABLO-selective release by survivin. Oncogene 2007, 26, 7569-75.
157. Song, Z.; Yao, X.; Wu, M. Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 2003, 278, 23130-40.
158. Altieri, D. C. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003, 3, 46-54.
159. Vaira, V.; Lee, C. W.; Goel, H. L.; Bosari; Languino, L. R.; Altieri, D. C. Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene 2007, 26, 2678-84.
160. Sarbassov, D. D.; Guertin, D. A.; Ali, S. M.; Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005, 307, 1098-1101.
161. Bijur, G. N.; Jope, R. S. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 2003, 87, 1427-35.
162. Dolai, S.; Pal, S.; Yadav, R. K.; Adak, S. Endoplasmic reticulum stress-induced apoptosis in Leishmania through Ca2+-dependent and caspase-independent mechanism. J Biol Chem 2011, 286, 13638-46.
163. Warnakulasuriyarachchi, D.; Cerquozzi, S.; Cheung, H. H.; Holcik, M. Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J Biol Chem 2004, 279, 17148-57.
164. Ledbetter, M. C.; Porter, K. R. A 'microtubule' in plant cell fine structure. J Cell Biol 1963, 19, 239-250.
165. Weisenberg, R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science 1972, 177, 1104-05.
166. Wells, W. A. The discovery of tubulin. J Cell Biol 2005, 169, 552.
167. Wells, W. A. Microtubules get a name. J Cell Biol 2005, 168, 852-853.
168. Vaart, B. v. d.; Akhmanova, A.; Straube, A. Regulation of microtubule dynamic instability. Biochem Soc Trans 2009, 37, 1007-13.
169. Westermann, S.; Weber, K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 2003, 4, 938-947.
170. Hirokawa, N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr Opin Cell Biol 1994, 6, 74-81.
171. Friden, B.; Wallin, M. Dependency of microtubule-associated proteins (MAPs) for tubulin stability and assembly; use of estramustine phosphate in the study of microtubules. Mol Cell Biochem 1991, 105, 149-158.
172. Wittmann, T.; Hyman, A.; Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 2001, 3, E28-34.
173. Gatlin, J. C.; Bloom, K. Microtubule motors in eukaryotic spindle assembly and maintenance. Semin Cell Dev Biol 2010, 21, 248-254.
174. Sandblad, L.; Busch, K. E.; Tittmann, P.; Gross, H.; Brunner, D.; Hoenger, A. The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 2006, 127, 1415-24.
175. Busch, K. E.; Brunner, D. The microtubule plus endtracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr Biol 2004, 14, 548-559.
176. Nakamura, M.; Zhou, X. Z.; Lu, K. P. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr Biol 2001, 11, 1062-67.
177. Chang, P.; Stearns, T. d-tubulin and e-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nat Cell Biol 2000, 2, 30-35.
178. Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004, 4, 253-265.
179. Jackson, J. R.; Patrick, D. R.; Dar, M. M.; Huang, P. S. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 2007, 7, 107-117.
180. Mahindroo, N.; Liou, J. P.; Chang, J. Y.; Hsieh, H. P. Antitubulin agents for the treatment of cancer-a medicin
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17577-
dc.description.abstract惡性腫瘤連續31年蟬聯國人十大死因的第一名,根據衛生署統計平均每5分鐘48秒就有1人罹患癌症,其惡性腫瘤的特性為生長速度不受到細胞的調控而快速的增生,其中胰臟癌是所有惡性腫瘤中為最具侵襲性的癌症,通常於末期才有顯著的臨床症狀,常常因為預後不佳的因素,其5年存活率不到5%,並且對於化學療法具有抵抗性,胰臟癌因此有「沉默殺手」的稱號;然而,前列腺癌則是生長的速度緩慢,甚至經年不會引起症狀或問題,導致許多老年男性患者不知因患有前列腺癌而致死,其中罹患前列腺癌的機率為六分之一,而因轉移性的前列腺癌致死率為三十分之一,因此,前列腺癌轉移侵入至其他器官如:淋巴結、骨骼、肺臟和肝臟,導致極高的致死率發生。癌症的治療是當今臨床上最重要的課題之一,也因此,抗癌藥物的研發也更顯得重要。
第一部分我們將探討天然物antroquinonol對人類胰臟癌細胞的抗癌機制,antroquinonol為牛樟芝(Antrodia camphorata)中萃取分離而得到ubiquinone類的化合物,在人類胰臟癌細胞株PANC-1和AsPC-1細胞中,具有濃度相關的生長抑制活性,antroquinonol經由抑制PI3-Kinase/Akt/mTOR訊息傳遞路徑,進而使得人類胰臟癌細胞之細胞生長週期停滯在G1期和伴隨著細胞凋亡(apoptosis)的現象,並藉由p21蛋白和K-ras的表現量增加,而加速人類胰臟癌細胞細胞自噬(autophagy)與細胞老化(senescence)的現象,最後造成人類胰臟癌細胞的生長受到抑制,導致細胞凋亡的現象,顯示antroquinonol對於人類胰臟癌細胞具有抗腫瘤的活性作用。
第二部分我們探討了天然物ardisianone對人類荷爾蒙不依賴型前列腺癌細胞的抗癌作用機轉,ardisianone為黑星紫金牛(Ardisia virens Kurz.)植物莖部中萃取分離而得到benzoquinone類的化合物,在人類荷爾蒙不依賴型前列腺癌細胞株PC-3和DU-145細胞中,具有抑制細胞生長的能力和促進細胞凋亡的活性,並誘發粒線體損傷的產生,對於Akt/mTOR/p70S6K調控蛋白質轉譯的抑制,促使Bcl-2家族蛋白和survivin表現量下降,導致caspases活化的訊息傳導路徑,除此之外,也會造成caspase-independent pathway的AIF自粒線體釋出而活化細胞凋亡途徑,顯示出ardisianone對於人類前列腺癌細胞透過粒線體損傷更具有抗腫瘤的活性作用。
第三部分我們將探討經由循理性設計的合成化合物KUD773,對人類荷爾蒙不依賴型前列腺癌細胞的抗癌作用機轉。KUD773化合物是依據thiazole和imidazole雜環做循理性設計的衍生物,在人類荷爾蒙不依賴型前列腺癌細胞株PC-3和DU-145細胞中,具有抑制細胞生長的能力和subG1期細胞凋亡的增加,並且使細胞週期停滯在有絲分裂期prometaphase到metaphase之間,其為有絲分裂相關蛋白PLK1(Thr210)的磷酸化表現量上升所調控,利用微管聚合實驗偵測KUD773可抑制微管的聚合能力,此外,藉由冷光偵測Aurora A kinase的活性受到抑制,導致細胞單極紡錘體(monopolar spindle)的形成。KUD773會調控cyclin A蛋白的下降,伴隨著cyclin B1蛋白的表現量上升,並且藉由CDK1(Thr161)的磷酸化表現量上升和CDK1(Tyr15)的磷酸化表現量下降而活化CDK1;除此之外,KUD773會促進Bcl-2蛋白的高度磷酸化和粒線體損傷,皆會造成caspases訊息傳導路徑的活化,並且對於細胞轉移調控相關因子MMP-2和MMP-9的蛋白表現量有抑制作用,顯示KUD773對於癌症的治療藥物發展上展露出一道曙光。
第四部分我們將探討經由循理性設計的合成化合物DS-435對人類荷爾蒙不依賴型前列腺癌細胞的抗癌作用機轉。DS-435利用組合式化學方式,依據拓樸異構酶(topoisomerase)抑制劑DACA和組織蛋白去乙醯酶(HDAC)抑制劑SAHA合成一系列循理性設計的衍生物,透過抑制拓樸異構酶和組織蛋白去乙醯酶的活性,來抑制人類荷爾蒙不依賴型前列腺癌細胞PC-3的細胞生長,DS-435會使細胞週期停滯在G1期,並隨著DS-435的濃度增加,使得細胞週期停滯在G2期。利用HDAC activity assay發現DS-435為非選擇性的HDAC抑制劑,並且會促進topoisomerase I-DNA斷裂複合物的結合,而抑制topoisomerase I的活性,更進一步地,DS-435會誘發DNA損傷反應使相關蛋白Chk1(Ser345)和Chk2(Thr68)的磷酸化表現量上升,並且也會造成組蛋白histone H3的乙醯化和磷酸化表現量顯著性地上升,其為HDAC活性受到抑制所調控。此外,利用合併療法觀察DS-435和蛋白質水解酶抑制劑MG-132,對於細胞凋亡的訊息傳導路徑具有協同性地作用。總結研究成果得知DS-435藉由同時抑制topoisomerase和HDAC的活性,造成DNA損傷相關蛋白的訊息途徑活化,最後導致細胞走向caspase-dependent細胞凋亡的路徑。
zh_TW
dc.description.abstractCancer has been the first leading cause of death in Taiwan for the past 31 years. In 2011, one patient in Taiwan was diagnosed with cancer every 5 minutes and 48 seconds according to the Department of Health (DOH). Cancer is a class of diseases characterized by out-of-control cell growth. Pancreatic adenocarcinoma is among the most aggressive of all cancers, which signs and symptoms frequently occur when the cancer is at the advanced stage. Pancreatic cancer has a poor prognosis with the 5-year survival less than 5%, which is largely resistant to chemotherapy with a name called 'silent killer'. However, prostate cancer is mostly a very slow progressing disease. In fact, many men die of old age without ever knowing they had prostate cancer. Moreover, the risk of prostate cancer is 1 in 6 and the risk of death due to metastatic prostate cancer is 1 in 30. Therefore, prostate cancer can metastasize to lymph nodes, bone, lung, and liver with advanced stage, leading to a high mortality. Cancer therapy is one of the top issues in clinical therapy. Accordingly, the development of anticancer agents is getting important.
On the part one of the thesis, we have identified the anticancer mechanism of natural product antroquinonol, a ubiquinone derivative isolated from a camphor tree mushroom Antrodia camphorata. Antroquinonol induced a concentration-dependent inhibition of cell proliferation in PANC-1 and AsPC-1 pancreatic cancer cells. The data suggest that antroquinonol induces anticancer activity in human pancreatic cancer cells through an inhibitory effect on PI3-kinase/Akt/mTOR pathways which induced G1 arrest of the cell-cycle and a subsequent apoptosis. Antroquinonol also induced the crosstalk between apoptosis, autophagic cell death and accelerated senescence, which was, at least partly, explained by the up-regulation of p21Waf1/Cip1 and K-ras.
On the part two, we have identified the anticancer mechanism of natural product ardisianone, a natural benzoquinone derivative isolated from Ardisia virens. Ardisianone displayed anti-proliferative and apoptotic activities against human hormone-refractory prostate cancer (HRPC) PC-3 and DU-145 cell lines. The data suggest that ardisianone induces apoptosis in human prostate cancers through mitochondrial damage stress, leading to the inhibition of Akt/mTOR/p70S6K translational pathway, down-regulation of Bcl-2 family members, degradation of survivin and activation of caspase cascades. The data support further development of ardisianone as an anticancer agent through mitochondrial damage stress.
On the part three, we have investigated the anticancer mechanism of rational designed based on thiazole and imidazole, KUD773, which induced anti-proliferative effect and a subsequent apoptosis in PC-3 and DU-145, two HRPC cell lines. Further detection of mitotic phosphoproteins and PLK1 phosphorylation at Thr210 indicated that KUD773 induced mitotic arrest, in particular, at prometaphase to metaphase of the cell cycle. The microtubule assembly assay showed that KUD773 inhibited tubulin polymerization. Moreover, KUD773 inhibited Aurora A activity by in vitro kinase assay and by the detection of monopolar spindle formation, a character of Aurora A inhibition. KUD773 triggered the up-regulation of cyclin B1 associated with the concomitant down-regulation of cyclin A. Accordingly, KUD773 induced an increase of Cdk1 phosphorylation at Thr161 and a decrease of phosphorylation at Tyr15 suggested Cdk1 activation. Moreover, the phosphorylation and subsequent down-regulation of Bcl-2 explain KUD773-mediated mitochondrial dysfunction and activation of caspase cascades. KUD773 also induced a significant decrease of protein levels of matrix metalloproteinase (MMP)-2 and -9, two central MMPs for cancer cell metastasis. In summary, the data suggest that KUD773 is a dual inhibitor against tubulin polymerization and Aurora A activity with the anti-cancer activity in HRPCs.
On the part four, we have investigated the mechanism of rational designed compound DS-435, which displayed anticancer activity through both topoisomerase and HDAC activity. DS-435 was effective against the cell growth of prostate cancer PC-3 cells, and induced an arrest of the cell cycle at both G1 (at lower concentrations) and G2 phase (at higher concentration). The HDAC activity assay demonstrated that DS-435 was a pan HDAC inhibitor. Additionaly, DS-435 induced the formation of topoisomerase I-DNA cleavage complex, suggesting an inhibition on topoisomerase I activity. Furthermore, DS-435 induced the phosphorylation of Chk1 and Chk2 at Ser345 and Thr68, respectively, indicating the activation of both kinases and the occurrence of DNA damage response. DS-435 also dramatically increased the levels of histone H3 acetylation and phosphorylation, confirming the inhibitory effect on HDAC activity. Moreover, the combination between DS-435 and the proteasome inhibitor MG-132 caused a synergistic effect on cell apoptosis. In summary, the data suggest that DS-435 is a dual inhibitor against topoisomerase I and HDAC activity. It induces DNA-damage response signaling, leading to caspase-dependent apoptotic cell death in PC-3 cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:22:38Z (GMT). No. of bitstreams: 1
ntu-102-D98423007-1.pdf: 6689551 bytes, checksum: b2bfefb9596f1e3cde9b45f4e3e08158 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents謝誌.......................................................i
目錄......................................................ii
縮寫表.....................................................iv
中文摘要...................................................vi
英文摘要.................................................viii
緒論.......................................................1
實驗材料....................................................6
實驗方法....................................................8
第一章 Antroquinonol (一種天然的ubiquinone衍生物)在人類胰臟癌細胞引發細胞凋亡、細胞自噬和細胞老化之研究...........................21
背景......................................................22
實驗結果.................................................30
討論......................................................33
附圖......................................................35
圖........................................................38
第二章 Ardisianone (一種天然的benzoquinone衍生物)在人類荷爾蒙不依賴型前列腺癌細胞引發粒線體損傷和survivin蛋白表現量下降之凋亡機轉研究.......45
背景......................................................46
實驗結果.................................................55
討論......................................................59
附圖......................................................62
圖........................................................65
第三章 KUD773 (一種phenylthiazole衍生物)在人類荷爾蒙不依賴型前列腺癌細胞經由抑制微管聚合和Aurora A酵素活性之抗癌機轉研究...........75
背景......................................................76
實驗結果.................................................83
討論......................................................86
附圖......................................................89
圖........................................................91
第四章 DS-435在人類荷爾蒙不依賴型前列腺癌細胞經由抑制topoisomerase和HDAC的酵素活性之抗癌機轉研究................................99
背景.....................................................100
實驗結果................................................106
討論.....................................................110
附圖.....................................................113
圖.......................................................119
總結與展望................................................127
著作.....................................................128
參考文獻..................................................130
dc.language.isozh-TW
dc.title抗癌活性成分在胰臟癌和前列腺癌的抗癌機轉探討zh_TW
dc.titleInvestigation of Anticancer Mechanisms of Bioactive Compounds in Pancreatic Cancer and Prostate Cancer Cellsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃聰龍(Tsong-Long Hwang),蕭哲志(George Hsiao),許麗卿(Lih-Ching Hsu),楊家榮(Chia-Ron Yang)
dc.subject.keyword細胞凋亡,細胞自噬,細胞老化,拓樸異構&#37238,組織蛋白去乙醯&#37238,zh_TW
dc.subject.keywordapoptosis,autophagy,senescence,topoisomerase,histone deacetylase,en
dc.relation.page151
dc.rights.note未授權
dc.date.accepted2013-07-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
6.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved