Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏齡
dc.contributor.authorWei-Chieh Yangen
dc.contributor.author楊偉杰zh_TW
dc.date.accessioned2021-06-08T00:18:44Z-
dc.date.copyright2013-07-31
dc.date.issued2013
dc.date.submitted2013-07-26
dc.identifier.citation[1] C. J. Murray and A. D. Lopez, 'Mortality by cause for eight regions of the world: Global Burden of Disease Study,' The Lancet, vol. 349, pp. 1269-1276, 1997.
[2] G. J. Hankey, 'Long-term outcome after ischaemic stroke/transient ischaemic attack,' Cerebrovascular Diseases, vol. 16, pp. 14-19, 2003.
[3] 廖建彰, 李采娟, 林瑞雄, and 宋鴻樟, '2000 年台灣腦中風發生率與盛行率的城鄉差異,' 2006.
[4] A. F. AbuRahma, S. P. Thiele, and J. T. Wulu, 'Prospective controlled study of the natural history of asymptomatic 60% to 69% carotid stenosis according to ultrasonic plaque morphology,' J Vasc Surg, vol. 36, pp. 437-443, 2002.
[5] E. Lang, H. Mehdorn, N. Dorsch, and M. Czosnyka, 'Continuous monitoring of cerebrovascular autoregulation: a validation study,' Journal of Neurology, Neurosurgery & Psychiatry, vol. 72, pp. 583-586, 2002.
[6] T. S. Riles, A. M. Imparato, G. R. Jacobowitz, P. J. Lamparello, G. Giangola, M. A. Adelman, and R. Landis, 'The cause of perioperative stroke after carotid endarterectomy,' Journal of vascular surgery: official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter, vol. 19, p. 206, 1994.
[7] D. T. Mason, I. T. Gabe, C. J. Mills, J. H. Gault, J. Ross, E. Braunwald, and J. P. Shillingford, 'Applications of the catheter-tip electromagnetic velocity probe in the study of the central circulation in man,' The American journal of medicine, vol. 49, pp. 465-471, 1970.
[8] J. Doucette, P. D. Corl, H. Payne, A. Flynn, M. Goto, M. Nassi, and J. Segal, 'Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity,' Circulation, vol. 85, pp. 1899-1911, 1992.
[9] A. Ohashi, Y. Kuroyanagi, N. Kitamura, Y. Kinoshita, K. Kaneko, and K. Yabuta, 'Cerebral blood flow monitoring using a novel laser Doppler flowmeter in asphyxiated infants,' Pediatrics International, vol. 51, pp. 715-719, 2009.
[10] P. Tortoli, G. Bambi, F. Guidi, and R. Muchada, 'Toward a better quantitative measurement of aortic flow,' Ultrasound Med Biol, vol. 28, pp. 249-257, 2002.
[11] K. Shimizu, T. Matsuda, T. Sakurai, A. Fujita, H. Ohara, S. Okamura, S. Hashimoto, H. Mano, C. Kawai, and M. Kiri, 'Visualization of moving fluid: quantitative analysis of blood flow velocity using MR imaging,' Radiology, vol. 159, pp. 195-199, 1986.
[12] J. Penaz, 'Criteria for set point estimation in the volume clamp method of blood pressure measurement,' Physiological research/Academia Scientiarum Bohemoslovaca, vol. 41, p. 5, 1992.
[13] G. M. Drzewiecki, J. Melbin, and A. Noordergraaf, 'Arterial tonometry: review and analysis,' J Biomech, vol. 16, pp. 141-152, 1983.
[14] S. Timoshenko and J. Goodier, '1970, Theory of Elasticity, McGraw-Hill, New York.'
[15] J.-L. G. Eric Bavu, Mathias Fink , Mickael Tanter and Stanislas Pol, 'Noninvasice in vivo liver fibrosis evaluation using Supersonic shear imaging : A clinical study on 113 Hepatitis C virus patients ' Ultrasound in Med. & Biol., vol. 37, 2011.
[16] K. Nightingale, S. McAleavey, and G. Trahey, 'Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,' Ultrasound Med Biol, vol. 29, pp. 1715-1723, 2003.
[17] H. C. Zuckerman, I. M. Ariel and J. B. Cleary, The Role of Mammogram in the Diagnosis, Breast Cancer in Breast Cancer, Diagnosis and Treatment, pp.152 -172 1987 :McGraw-Hill .
[18] S. Laurent, S. Katsahian, C. Fassot, A. I. Tropeano, I. Gautier, B. Laloux, and P. Boutouyrie, 'Aortic stiffness is an independent predictor of fatal stroke in essential hypertension,' Stroke, vol. 34, pp. 1203-1206, May 2003.
[19] D. Duprez and J. Cohn, 'Arterial stiffness as a risk factor for coronary atherosclerosis,' Current Atherosclerosis Reports, vol. 9, pp. 139-144, 2007.
[20] T. E. Oliphant, Direct Methods for Dynamic Elastography Reconstruction: Optimal Inversion of the Interior Helmholtz Problem: Biomedical Sciences--Biomedical Imaging -- Mayo Graduate School, 2001.
[21] F. Kallel and J. Ophir, 'A least-squares strain estimator for elastography,' Ultrason Imaging, vol. 19, pp. 195-208, Jul 1997.
[22] R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves”, Science, vol. 269, pp. 1854-57, 1995.
[23] A. P. Sarvazyan, O. V. Rudenko, D. Scott, J. Swanson, B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics”, Ultrasound Med. Biol., vol. 24, no. 9, pp. 1419-1435, 1998.
[24] A. Giannoula and R. S. Cobbold, 'Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 55, pp. 343-58, Feb 2008.
[25] J. Bercoff, M. Tanter, and M. Fink, 'Supersonic shear imaging: a new technique for soft tissue elasticity mapping,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 51, pp. 396-409, Apr 2004.
[26] J. Ophir, S. Alam, B. Garra, F. Kallel, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, 'Elastography: Imaging the Elastic Properties of Soft Tissues with Ultrasound,' Journal of Medical Ultrasonics, vol. 29, pp. 155-171, 2002.
[27] A. Giannoula, Propagation of Shear Waves Generated by a Finite-amplitude Ultrasound Radiation Force in a Viscoelastic Medium: Library and Archives Canada = Bibliotheque et Archives Canada, 2008.
[28] H. Yu, J. K. Mouw, and V. M. Weaver, 'Forcing form and function: biomechanical regulation of tumor evolution,' Trends in cell biology, vol. 21, pp. 47-56, 2011.
[29] Meyers and Chawla (1999): 'Mechanical Behavior of Materials,' 98-103.
[30] W. N. Findley, J. S. Y. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials: With an Introduction to Linear Viscoelasticity: Dover Publ., 1976.
[31] C. A. Carrascal, Measurement of Kidney Viscoelasticity with Shear Wave Dispersion Ultrasound Vibrometry: Biomedical Sciences--Biomedical Imaging -- Mayo Graduate School, 2011.
[32] K. Oh In, P. Chunjae, N. Hyun Soo, W. Eung Je, S. Jin Keun, K. J. Glaser, A. Manduca, and R. L. Ehman, 'Shear Modulus Decomposition Algorithm in Magnetic Resonance Elastography,' Medical Imaging, IEEE Transactions on, vol. 28, pp. 1526-1533, 2009.
[33] Lin, K. & McLaughlin, 'An error estimate on the direct inversion model in shear stiffness imaging,' Inverse Problems, 2009.
[34] M. Muller, J. L. Gennisson, T. Deffieux, M. Tanter, and M. Fink, 'Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study,' Ultrasound Med Biol, vol. 35, pp. 219-29, Feb 2009.
[35] H. Zhao, P. Song, M. W. Urban, R. R. Kinnick, M. Yin, J. F. Greenleaf, and S. Chen, 'Bias observed in time-of-flight shear wave speed measurements using radiation force of a focused ultrasound beam,' Ultrasound Med Biol, vol. 37, pp. 1884-92, Nov 2011.
[36] T. E. Oliphant, A. Manduca, R. L. Ehman, and J. F. Greenleaf, 'Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation,' Magnetic Resonance in Medicine, vol. 45, pp. 299-310, Feb 2001.
[37] Z. Heng, M. Urban, J. Greenleaf, and C. Shigao, 'Elasticity and viscosity estimation from shear wave velocity and attenuation: A simulation study,' in Ultrasonics Symposium (IUS), 2010 IEEE, 2010, pp. 1604-1607.
[38] C. Amador, M. W. Urban, S. Chen, Q. Chen, K. N. An, and J. F. Greenleaf, 'Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,' IEEE Trans Biomed Eng, vol. 58, pp. 1706-14, Jun 2011.
[39] W. C. Hayes, L. M. Keer, G. Herrmann, and L. F. Mockros, 'A mathematical analysis for indentation tests of articular cartilage,' Journal of Biomechanics, vol. 5, pp. 541-551, 1972.
[40] 邱博冠, 使用單一線性陣列探頭量測動脈脈波速度. 台灣大學生醫電子與資訊學研究所 碩士論文, 2009.
[41] Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues: Springer, 1993.
[42] W. P. D. Wilmer Nichols, M. D. Michael F. O'Rourke, and M. D. Charalambos Vlachopoulos, McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles: Hodder Arnold, 2011.
[43] P. C. Li, 'Principles of Medical Ultrasound,' Class Notes, National Taiwan University, 2006.
[44] Ron Daigle, Sequence Programming Tutorial, Dec 2010.
[45] C. Maleke, M. Pernot, and E. E. Konofagou, 'Single-element focused ultrasound transducer method for harmonic motion imaging,' Ultrason Imaging, vol. 28, pp. 144-58, Jul 2006.
[46] H. Zhao, et al., 'Measure Elasticity and Viscosity Using the Out-of-plane Shear Wave',2012.
[47] T. Deffieux, J.-L. Gennisson, J. Bercoff, and M. Tanter, 'On the effects of reflected waves in transient shear wave elastography,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 58, pp. 2032-2035, 2011.
[48] Benthin, M., et al., 'Calculation of Pulse-Wave Velocity Using Cross-Correlation - Effects of Reflexes in the Arterial Tree,' Ultrasound in Medicine and Biology, pp. 461-469,1991.
[49] Y. C. Chiu, P. W. Arand, S. G. Shroff, T. Feldman, and J. D. Carroll, 'Determination of pulse wave velocities with computerized algorithms,' American heart journal, vol. 121, pp. 1460-1470, 1991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17528-
dc.description.abstract臨床上,腦血流量被視為是在腦血管意外預防和治療上的重要指標。由於大腦血流是由頸動脈攜帶至腦部,我們有機會藉由量測頸部表面的壓力值來監測腦血流量。由理論觀點出發,腦血流量與表面壓力之間的關係可由納維斯托克斯方程式(Navier-Stokes equation)和拉梅問題(Lame problem)推導之壓力轉換函數描述。但在轉換函數中並未考慮到人體頸部組織為具有黏彈性質的材料,而是將組織假設為完全彈性體。因此為能夠提升此轉換函數的正確性,我們期待藉由測量材料的黏彈性質資訊進而修正此函數。
近年來黏彈性質的測量常使用於對病變組織如乳癌和肝纖維化的診斷,在此研究中我們使用超音速剪力影像(Supersonic shear imaging)作為測量黏彈性質的方法。選用此方法的原因在於其能夠即時以非侵入性的方式提供定量的資訊。研究中使用了不同材料的仿體進行測量。結果顯示我們能夠得到定量的彈性資訊以及定性的黏滯性資訊。而在非均勻仿體的實驗中,二維的黏彈性質資訊能分辨出硬塊與背景仿體的差別性。
在驗證血流監測方法的理論上,因從拉梅問題的推導中得知壓力轉換函數可由位移轉換函數驗證。我們利用都普勒超音波的方法測量血管仿體的液體流速及仿體位移。由都普勒超音波測量的液體流速此處視為是實際流速,並將其與由納維斯托克斯方程式得到之流速訊號作比較。位移訊號之實驗結果與理論之位移轉換函數呈現高度匹配性。而流速部分在值之大小與波形部分存在因實作方法及參數的近似而造成的差異。實驗之結果顯示了此種測量血流方法的可能性。
zh_TW
dc.description.abstractClinically, cerebral blood flow(CBF) is an important indicator for the prevention and curation of cerebral vascular accident(CVA) which is a major cause of death worldwide. Since cerebral blood flow is provided by carotid artery, one possible monitoring method of CBF is to measure the pressure on the neck surface. Theoretically, blood flow can be estimated from the surface pressure using Navier-Stokes equation and pressure transfer function derived by Lame problem. The derived transfer function considers only purely elastic material which is different from the viscoelastic human tissues. Therefore viscoelasticity estimation might help us correct and improve the accuracy of this mechanical model.
Estimation of viscoelasticity is used in diagnosis of pathologic tissues like breast cancer or liver fibrosis recently. In this thesis, Superesonic shear imaging(SSI) method is used to estimate viscoelasticity because of its advantages of real-time, noninvasive and quantitative mapping. Phantoms with different materials are prepared for estimation. Our results have obtained quantitative elasticity mapping and qualitative viscosity information. Two dimensional viscoelasticity mapping for inhomogeneous phantom is reconstructed and can show the difference between inclusion and background phantoms.
As for validation of new monitoring approach's theory, because it gives access to verify pressure transfer function by displacement transfer function from the derivation of pressure transfer function. We measure flow velocity and material displacements of a vessel wall phantom based on Doppler ultrasound. The flow velocity computed by Doppler is considered to be the real velocity value and compared with the velocity evaluated by Navier-Stokes equation. Experimental data of displacements fit well to theoretic transfer function curve. Waveforms between true and estimated flow velocity show similarity except some distortion due to approximation of implementation method and parameters. These validation results show the potential to let us monitor the carotid flow by this approach.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:18:44Z (GMT). No. of bitstreams: 1
ntu-102-R00945002-1.pdf: 8388000 bytes, checksum: d478217b4fa807d3133cd221451704ee (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Methods to measure viscoelasticity 3
1.3 Organization 8
Chapter 2 Theory 9
2.1 Elasticity and viscosity 9
2.2 Rheological models 12
2.3 Wave propagation theory 13
2.3.1 Direct inversion method 13
2.3.2 Shear wave speed(SWS)-based method 14
2.4 Verifying methods 15
2.4.1 Indentation 15
2.4.2 Compressor 16
2.5 Mechanical model for carotid artery 17
2.6 Blood flow estimation 19
2.7 Doppler Ultrasound 20
Chapter 3 Experimental architecture 23
3.1 Phantom preparation 23
3.1.1 Plastic phantom 23
3.1.2 Agarose phantom 23
3.2 Supersonic shear imaging(SSI) 24
3.2.1 Supersonic shear imaging(SSI) 24
3.2.2 Ultrasound system (Verasonics) 25
3.3 System for hemodynamics 27
Chapter 4 Signal processing methods 29
4.1 Doppler estimation 29
4.2 Time of flight 30
4.3 Phase velocity approach 31
4.4 K space approach 32
4.5 2D viscoelasticity mapping 34
4.6 Blood flow estimation 35
Chapter 5 Results and discussion 37
5.1 Simulation study 37
5.2 Homogeneous phantoms 38
5.2.1 Elasticity 38
5.2.2 Viscosity 40
5.3 Inhomogeneous phantom 43
5.4 Displacement transfer function and pulse wave velocity estimation 48
5.5 Relationship between flow velocity and pressure 52
Chapter 6 Conclusion and Future works 54
6.1 Conclusion 54
6.2 Future works 54
6.2.1 Viscoelasiticity estimation 54
6.2.2 Hemodynamics of carotid artery 55
REFERENCE 56
dc.language.isoen
dc.title以超音速剪力影像測量物質之黏彈性質及其於頸動脈血流動力學之應用zh_TW
dc.titleMeasurement of Phantom Viscoelasticity with Supersonic Shear Imaging and Its Application in Accessing Hemodynamics of Carotid Arteryen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李百祺,呂良鴻,沈哲州
dc.subject.keyword腦血流量,納維斯托克斯方程式,彈性,黏滯性,超音速剪力影像,都普勒超音波,zh_TW
dc.subject.keywordCerebral blood flow,Navier-Stokes equation,Elasticity,Viscosity,Supersonic shear imaging,Doppler ultrasound,en
dc.relation.page61
dc.rights.note未授權
dc.date.accepted2013-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
8.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved