請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17514完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華 | |
| dc.contributor.author | Ying-Ju Chen | en |
| dc.contributor.author | 陳瀅如 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:17:48Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-26 | |
| dc.identifier.citation | 1. Campo GM, Avenoso A, Campo S, et al. (2010) Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie 92:204–215.
2. Chiu YC, Yang RS, Hsieh KH, et al. (2007) Stromal cell-derived factor-1 induces matrix metalloprotease-13 expression in human chondrocytes. Mol Pharmacol 72:695–703. 3. Burrage PS, Mix KS, Brinckerhoff CE. (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543. 4. Liu MH, Sun JS, Tsai SW, et al. (2010) Icariin protects murine chondrocytes from lipopolysaccharide-induced inflammatory responses and extracellular matrix degradation. Nutr Res 30:57–65. 5. Glass GG. (2006) Osteoarthritis. Dis Mon 52:343–362. 6. Goldring MB, Goldring SR. (2007) Osteoarthritis. J Cell Physiol 213:626–634. 7. Gaston JS. (2008) Cytokines in arthritis--the 'big numbers' move centre stage. Rheumatology (Oxford) 47:8–12. 8. Vuolteenaho K, Moilanen T, Knowles RG, et al. (2007) The role of nitric oxide in osteoarthritis. Scand J Rheumatol 36:247–258. 9. Xie Q, Nathan C. (1994) The high-output nitric oxide pathway: role and regulation. Leukoc Biol 56:576–582. 10. Amin AR, Attur M, Abramson SB. (1999) Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr Opin Rheumatol 11:202–209. 11. Simmons DL, Botting RM, Hla T. (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437. 12. Wu KK. (1995) Inducible cyclooxygenase and nitric oxide synthase. Adv Pharmacol 33:179–207. 13. Xie QW, Whisnant R, Nathan C. (1993) Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon and bacterial lipopolysaccharide. J Exp Med 177:1779–1784. 14. Akira S, Takeda K. (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. 15. Akira S, Takeda K, Kaisho T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680. 16. Fernandes JC, Martel-Pelletier J, Pelletier JP. (2002) The role of cytokines in osteoarthritis pathophysiology. Biorheology 39:237–246. 17. Vincenti MP, Brinckerhoff CE. (2001) Early response genes induced in chondrocytes stimulated with the inflammatory cytokine interleukin-1β. Arthritis Res 3:381–388. 18. Goldring SR, Goldring MB. (2004)The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res 427 Suppl:S27–36. 19.Ryu J, Treadwell BV, Mankin HJ. (1984) Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage. Arthritis Rheum 27:49–57. 20. Largo R, Alvarez-Soria MA, Díez-Ortego I, Calvo E, Sánchez-Pernaute O, Egido J, et al. (2003) Glucosamine inhibits IL-1beta-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 11:290–298. 21. Hernandez-Diaz S, Garcia Rodriguez LA. (2001) Epidemiological assessment of the safety of conventional nonsteroidal anti-inflammatory drugs. American Journal of Medicine 110:20S–27S. 22. Blagojevic M, Jinks C, Jeffery A, Jordan KP. (2010) Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18:24–33. 23. Felson DT, Zhang Y. (1998) An update on the epidemiology of knee and hiposteoarthritis with a view to prevention. Arthritis Rheum 41:1343–1355. 24. Verzijl N, DeGroot J, Oldehinkel E, Bank RA, Thorpe SR, et al. (2000) Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J 350:381–387. 25. DeGroot, J. (2004) The AGE of the matrix: chemistry, consequence and cure. Curr Opin Pharmacol 4:301–305. 26. Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, et al. (2002) Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 46:114–123. 27. Yammani RR, Carlson CS, Bresnick AR, Loeser RF. (2006) Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. Arthritis Rheum 54:2901–2911. 28. Rasheed Z, Akhtar N, Haqqi TM. (2011) Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes. Rheumatology 50:838–851. 29. Wada J, Makino H. (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 124:139–152. 30. van Beijnum JR, Buurman WA, Griffioen AW. (2008) Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11:91–99. 31. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 137:354–366. 32. Barish GD, Narkar VA, Evans RM. (2006) PPAR δ: a dagger in the heart of the metabolic syndrome. J Clin Invest 116:590–597. 33. Tontonoz P, Hu E, Spiegelman BM. (1994) Stimulation of adipogenesis in fibroblasts by PPAR 2, a lipid-activated transcription factor. Cell 79:1147–1156. 34. Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA. (1994) Peroxisome proliferator-activated receptor (PPAR)γ: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798–800. 35. Cho MC, Lee K, Paik SG, Yoon DY. (2008) Peroxisome proliferators activated receptor (PPAR) modulators and metabolic disorders. PPAR Res 2008:679137. 36. Takano H, Komuro I. (2009) Peroxisome proliferator-activated receptor γ and cardiovascular diseases. Circ J 73:214–220. 37. Jiang C, Ting AT, Seed B. (1998) PPARγ agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86. 38. Ji JD, Cheon H, Jun JB, Choi SJ, Kim YR, et al. (2001) Effects of peroxisome proliferator activated receptor-γ (PPARγ) on the expression of inflammatory cytokines and apoptosis induction in rheumatoid synovial fibroblasts and monocytes. J Autoimmun 17:215–221. 39. Fahmi H, di Battista JA, Pelletier JP, Mineau F, Ranger P, et al. (2001) Peroxisome proliferator-activated receptor γ activators inhibit interleukin-1β–induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthritis Rheum 44:595–607. 40. Afif H, Benderdour M, Mfuna-Endam L, Martel-Pelletier J, Pelletier JP, et al. (2007) Peroxisome proliferator-activated receptor γ1 expression is diminished in human osteoarthritic cartilage and is down-regulated by interleukin-1β in articular chondrocytes. Arthritis Res Ther 9:R31. 41. Kobayashi T, Notoya K, Naito T, Unno S, Nakamura A, et al. (2005) Pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, reduces the progression of experimental osteoarthritis in guinea pigs. Arthritis Rheum 52:479–487. 42. Fahmi H, Pelletier JP, Mineau F, Martel-Pelletier J. (2002) 15d-PGJ2 is acting as a 'dual agent' on the regulation of COX-2 expression in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 10:845–848. 43. Yang Q, Chen C, Wu S, Zhang Y, Mao X, et al. (2010) Advanced glycation end products down-regulates peroxisome proliferator-activated receptor γ expression in cultured rabbit chondrocyte through MAPK pathway. Eur J Pharmacol 649:108–114. 44. Garcia Rodriguez LA, Hernandez-Diaz S. (2000) The epidemiology of myocardial infarction and heart failure among users of nonsteroidal anti-inflammatory drugs. Epidemiology 11:382–387. 45. Nielsen GL, Sorensen HT, Larsen H, Pedersen L. (2001) Risk of adverse birth outcome and miscarriage in pregnant users of non-steroidal anti-inflammatory drugs: population based observational study and case-control study. Br Med J 322:266–270. 46. Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK. (2003) Honokiol protects rat brain from focal cerebral ischemia–reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Res 992:159–166. 47. Jacobs BP, Browner WS. (2000) Ginkgo biloba: a living fossil. Am J Med 108:341–342. 48. Shi C, Xiao S, Liu J, et al. (2010) Ginkgo biloba extract EGb761 protects against aging-associated mitochondrial dysfunction in platelets and hippocampi of SAMP8 mice. Platelets 21:373–379. 49. Mahadevan S, Park Y. (2008) Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. J Food Sci 73:R14–19. 50. Lo YC, Teng CM, Chen CF, Chen CC, Hong CY. (1994) Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem Pharmacol 47:549–553. 51. Chiang CK, Sheu ML, Hung KY, Wu KD, Liu SH. (2006) Honokiol, a small molecular weight natural product, alleviates experimental mesangial proliferative glomerulonephritis. Kidney Int 70:682–689. 52. Park J, Lee J, Jung E, Park Y, Kim K, Park B, et al. (2004) In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur J Pharmacol 496:189–195. 53. Kim BH, Cho JY. (2008) Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression. Acta Pharmacol Sin 29:113–122. 54. Stanos SP. (2013) Osteoarthritis guidelines: a progressive role for topical nonsteroidal anti-inflammatory drugs. J Multidiscip Healthc 6:133–137. 55. Iacono A, Go´mez R, Sperry J, et al. (2010) Effect of Oleocanthal and Its Derivatives on Inflammatory Response Induced by Lipopolysaccharide in a Murine Chondrocyte Cell Line. Arthritis Rheum 62:1675–1682. 56. Kamekura S, Hoshi K, Shimoaka T, et al. (2005) Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 13:632–641. 57. Mankin HJ, Dorfman H, Lippiello L, et al.(1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523–537. 58. Yang TH, Young YH, Liu SH. (2011) EGb 761 (Ginkgo biloba) protects cochlear hair cells against ototoxicity induced by gentamicin via reducing reactive oxygen species and nitric oxide-related apoptosis. J Nutr Biochem 22:886–894. 59. Varga E, Bodi A, Ferdinandy P, et al. (1999) The protective effect of EGb 761 in isolated ischemic/reperfused rat hearts: a link between cardiac function and nitric oxide production. J Cardiovasc Pharmacol 34:711–717. 60. Akiba S, Kawauchi T, Oka T, et al. (1998) Inhibitory effect of the leaf extract of Ginkgo biloba L. on oxidative stress-induced platelet aggregation. Biochem Mol Biol Int 46:1243–1248. 61. Marcocci L, Maguire JJ, Droy-Lefaix MT, et al. (1994) The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun 201:748–755. 62. Yan LJ, Droy-Lefaix MT, Packer L. (1995) Ginkgo biloba extract (EGb 761) protects human low density lipoproteins against oxidative modification mediated by copper. Biochem Biophys Res Commun 212:360–366. 63. Shen JG, Zhou DY. (1995) Efficiency of Ginkgo biloba extract (EGb 761) in antioxidant protection against myocardial ischemia and reperfusion injury. Biochem Mol Biol Int 35:125–134. 64. Szabo ME, Droy-Lefaix MT, et al. (1992) Modification of reperfusion-induced ionic imbalance by free radical scavengers in spontaneously hypertensive rat retina. Free Radic Biol Med 13:609–620. 65. Martín MJ, La-Casa C, Alarcón-de-la-Lastra C, et al. (1998) Anti-oxidant mechanisms involved in gastroprotective effects of quercetin. Z Naturforsch C 53:82–88. 66. Takeda K, Kaisho T, Akira S. (2003) Toll-like receptors. Annu Rev Immunol 21:335–376. 67. Hoshino K, Takeuchi O, Kawai T, et al. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752. 68. Loniewski KJ, Patial S, Parameswaran N. (2007) Sensitivity of TLR4- and -7- induced NF kappa B1 p105-TPL2-ERK pathway to TNF-receptor-associated -factor-6 revealed by RNAi in mouse macrophages. Mol Immunol 44:3715–3723. 69. Bobacz K, Sunk IG, Hofstaetter JG, et al. (2007) Toll-like receptors and chondrocytes: the lipopolysaccharide-induced decrease in cartilage matrix synthesis is dependent on the presence of toll-like receptor 4 and antagonized by bone morphogenetic protein 7. Arthritis Rheum 56:1880–1893. 70. Li X, Ellman M, Muddasani P, et al. (2009) Prostaglandin E2 and its cognate EP receptors control human adult articular cartilage homeostasis and are linked to the pathophysiology of osteoarthritis. Arthritis Rheum 60:513–523. 71. Au RY, Al-Talib TK, Au AY, et al. (2007) Avocado soybean unsaponifiables (ASU) suppress TNF-alpha, IL-1beta, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages. Osteoarthritis Cartilage 15:1249–1255. 72. Goldring MB, Berenbaum F. (1999) Human chondrocyte culture models for studying cyclooxygenase expression and prostaglandin regulation of collagen gene expression. Osteoarthritis Cartilage 7:386–388. 73. Lotz M. (1999) The role of nitric oxide in articular cartilage damage. Rheum Dis Clin North Am 25:269–282. 74. Notoya K, Jovanovic DV, Reboul P, et al. (2000) The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. J Immunol 165:3402–3410. 75. Brenner SS, Klotz U, Alscher DM, et al. (2004) Osteoarthritis of the knee--clinical assessments and inflammatory markers. Osteoarthritis Cartilage 12:469–475. 76. Lin FY, Chen YH, Chen YL, et al. (2007) Ginkgo biloba extract inhibits endotoxin-induced human aortic smooth muscle cell proliferation via suppression of toll-like receptor 4 expression and NADPH oxidase activation. J Agric Food Chem 55:1977–1984. 77. Weng TI, Wu HY, Kuo CW, Liu SH. (2011) Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation. Intensive Care Med 37:533–541. 78. Chen YJ, Wu CL, Liu JF, Fong YC, Hsu SF, Li TM, et al. (2010) Honokiol induces cell apoptosis in human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress. Cancer Lett 291:20–30. 79. Wood DD, Ihrie EJ, Dinarello CA, Cohen PL. (1983) Isolation of an interleukin-1-like factor from human joint effusions. Arthritis Rheum 26:975–983. 80. Goldring MB, Berenbaum F. (2004) The regulation of chondrocyte function by proinflammatory mediators: Prostaglandins and nitric oxide. Clin Orthop 427:S37–S46. 81. Tetlow LC, Adlam DJ, Woolley DE. (2001) Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage. Arthritis Rheum 44:585–594. 82. Wu W, Billinghurst RC, Pidoux I, Antoniou J, Zukor D, TanzerM, et al. (2002) Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum 46:2087–2094. 83. Lewis EJ, Bishop J, Bottomley KM, Bradshaw D, Brewster M, Broadhurst MJ, et al. (1997) Ro 32-3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo. Br J Pharmacol 121:540–546. 84. Bruckner P, van der Rest M. (1994) Structure and function of cartilage collagens. Microsc Res Tech 28:378–384. 85. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, et al. (1996) Cloning, expression and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97: 761–768. 86. Burrage PS, Mix KS, Brinckerhoff CE. (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543. 87. Firestein GS, Manning AM. (1999) Signal transduction and transcription factors in rheumatic disease. Arthritis Rheum 42:609–621. 88. Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. (2001) J Clin Invest 107:7–11. 89. Liacini A, Sylvester J, Li WQ, Zafarullah M. (2002) Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor κB (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 21:251–262. 90. Singh R, Ahmed S, Islam N, Goldberg VM, Haqqi TM. (2002) Epigallocatechin-3-gallate inhibits interleukin-1β-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis Rheum 46,2079–2086. 91. Roman-Blas JA, Jimenez SA. (2006) NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 14:839–848. 92. Loeser RF, Yammani RR, Carlson CS, Chen H, Cole A, et al. (2005) Articular chondrocytes express the receptor for advanced glycation end products: Potential role in osteoarthritis. Arthritis Rheum 52:2376–2385. 93. Schelbergen RF, Blom AB, van den Bosch MH, Slöetjes A, Abdollahi-Roodsaz S, et al. (2012) Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum 64:1477–1487. 94. Fahmi H, Martel-Pelletier J, Pelletier JP, Kapoor M. (2011) Peroxisome proliferator-activated receptor γ in osteoarthritis. Mod Rheumatol 21:1–9. 95. Steenvoorden MM, Huizinga TW, Verzijl N, Bank RA, Ronday HK, et al. (2006) Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum 54:253–256. 96. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, et al. (1993) Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91:2470–2478. 97. Berenbaum F. (2011) Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype. Ann Rheum Dis 70:1354–1356. 98. Schett G, Kleyer A, Perricone C, Sahinbegovic E, Iagnocco A, et al. (2013) Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care 36:403–409. 99. Fahmi H, Pelletier JP, di Battista JA, Cheung HS, Fernandes JC, et al. (2002) Peroxisome proliferator-activated receptor activators inhibit MMP-1 production in human synovial fibroblasts likely by reducing the binding of the activator protein 1. Osteoarthritis Cartilage 10:100–108. 100. DeGroot J, Verzijl N, Jacobs KM, Budde M, Bank RA, et al. (2001) Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthritis Cartilage 9:720–726. 101. Shoulders MD, Raines RT. (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958. 102. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, et al. (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99:1534–1545. 103. Akira S, Taga T, Kishimoto T. (1993) Interleukin 6 in biology and medicine. Adv Immunol 54:1–78. 104. Andersson U, Erlandsson-Harris H. (2004) HMGB1 is a potent trigger of arthritis. J Intern Med. 255:344–350. 105. Terada C, Yoshida A, Nasu Y, Mori S, Tomono Y, et al. (2011) Gene expression and localization of high-mobility group box chromosomal protein-1 (HMGB-1) in human osteoarthritic cartilage. Acta Med Okayama 65:369–377. 106. Medzhitov R. (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145. 107. Van Lent PL, Blom AB, Grevers L, Sloetjes A, van den Berg WB. (2007) Toll-like receptor 4 induced FcR expression potentiates early onset of joint inflammation and cartilage destruction during immune complex arthritis: Toll-like receptor 4 largely regulates FcR expression by interleukin 10. Ann Rheum Dis 66:334–340. 108. Wolff DA, Stevenson S, Goldberg VM. (1992) S-100 protein immunostaining identifies cells expressing a chondrocytic phenotype during articular cartilage repair. J Orthop Res 10:49–57. 109. Lin L, Park S, Lakatta EG. (2009) RAGE signaling in inflammation and arterial aging. Front Biosci 14:1403–1413. 110. Noguchi T, Sado T, Naruse K, Shigetomi H, Onogi A, et al. (2010) Evidence for activation of Toll-like receptor and receptor for advanced glycation end products in preterm birth. Mediators Inflamm 2010:490–406. 111. Qin YH, Dai SM, Tang GS, Zhang J, Ren D, et al. (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J Immunol 183:6244–6250. 112. Kim HA, Cho ML, Choi HY, Yoon CS, Jhun JY, et al. (2006) The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum 54:2152–2163. 113. Nah SS, Choi IY, Yoo B, Kim YG, Moon HB, et al. (2007) Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-alpha in human osteoarthritic chondrocytes. FEBS Lett 581:1928–1932. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17514 | - |
| dc.description.abstract | 骨關節炎(osteoarthritis)又稱為退化性關節炎(degenerative joint disease),常伴隨著關節軟骨的破壞退化及慢性炎症的表現。發炎前驅物質interleukin(IL)-1β會刺激許多使軟骨退化的媒介像是matrix metalloproteinases (MMPs)的產生,因此在退化性關節炎的致病過程中扮演著重要的角色。隨著年紀的增長,體內會有
經過糖化的蛋白稱為糖化終產物(Advanced glycation end products, AGEs)不斷堆積,尤其在關節中,並且和由老化所引起退化性關節炎中軟骨的損壞及受傷有非常密切的關係。EGb761 是一種銀杏葉片的萃取物;厚朴酚是一種從厚朴(Magnolia officinalis)中萃取出的天然小分子萃取物,這兩種天然物質在過去文獻中已經被證實具有抗發炎的作用。本論文研究主要利用in vitro 及in vivo 的模式,去模擬軟骨的發炎反應,並且探討EGb761 及honokiol 對於退化性關節炎的治療效果。另一方面,本論文也探討人類軟骨細胞由AGEs 所引起的發炎反應中,peroxisome proliferator-activated receptor γ (PPARγ)、 toll-like receptor 4 (TLR4)以及AGEs 受體(receptor for AGEs, RAGE)所扮演的角色。實驗共分為三個部分。 第一個部分主要在探討EGb761 是否能抑制人類軟骨細胞中,由脂多醣(lipopolysaccharide, LPS)及第一介白素-1β(interleukin-1β, IL-1β)所引起的發炎反應;並以一個退化性關節炎的大鼠模式,來探討EGb761 是否具有保護軟骨的作用。研究結果顯示,LPS 在人類軟骨細胞中會大量引發前列腺素(prostaglandin E2, PGE2)和一氧化氮(nitric oxide, NO)的產生以及環氧化酶(cyclooxygen 2, COX-2)和誘導型一氧化氮合成酶(inducible nitric oxide synthase, iNOS)蛋白的表現。另外,LPS 也能調控toll-like receptor-4 (TLR4)、其下游TNF-receptor-associated factor 6(TRAF6)以及nuclear factor (NF)-κB 的訊息傳遞路徑。在由IL-1β所模擬的發炎反應也有一樣的趨勢。而以上這些由LPS 或IL-1β所引起發炎相關的反應都能被EGb761 以及其主要成分quercetin 和kampferol 所抑制。在退化性關節炎的大鼠模式中,血液中PGE2 及NO、組織切片軟骨的改變以及COX-2 和nitrotyrosine 的表現也都有增加的趨勢;而在餵食EGb761 的組別中,這些現象也都有被抑制。 第二個部分主要想探討厚朴酚在退化性關節炎的模式下對於軟骨的發炎是否具有治療的作用。研究結果顯示,厚朴酚在人類軟骨細胞中能抑制由IL-1β所引起的PGE2、NO 及IL-6 的產生及COX-2 和iNOS 蛋白的表現。此外,也能透過抑制細胞核內IKK/IκBα/NF-κB 的活化來減少軟骨的發炎反應。另一方面,厚朴酚也能顯著的抑制由IL-1β 所引起MMP-13 的產生以及collagen II 的表現減少。 第三個部分主要在探討人類軟骨細胞由AGEs 所引起的發炎反應中, PPARγ、TLR4 以及 RAGE 所扮演的角色。研究結果顯示人類軟骨細胞在AGEs的刺激下,會大量產生IL-6 與MMP-13 以及使COX-2 和high-mobility group protein B1 的蛋白表現量增加,並使collgen II 的表現量減少。同時,AGEs 也能活化核內轉錄因子NF-κB 的表現。此外,AGEs 也會隨著時間及劑量,正向調控TLR4 及RAGE 的表現以及負向調控PPARγ 的表現。給予TLR4 及RAGE 的抗 體則能夠有效的抑制由AGEs 所引起和發炎反應相關的訊息傳遞及PPARγ 的負向調控;給予PPARγ 的致效劑pioglitazone 也能抑制由AGEs 所引起和發炎反應相關的訊息傳遞。另一方面,給予p38 mitogen-activated protein kinases、c-Jun N-terminal kinase 和NF-κB 的抑制劑能夠抑制由AGEs 所引起PPARγ 的負向調 控及collagen II 表現的減少。 綜合以上,結果證實EGb761 在人類軟骨細胞及退化性關節炎大鼠的模式中,具有抗發炎的作用;另外,結果也證實厚朴酚能夠透過IKK/IκBα/NF-κB 訊息傳遞路徑對於由IL-1β 所引起的軟骨退化具有保護的作用;未來EGb761 和厚朴酚也許可以做為退化性關節炎治療用藥的新選擇。除此之外,我們的結果也證實在人類軟骨細胞中,AGEs 會經由TLR4 和RAGE AGEs 在人類軟骨細胞中能夠透 過TLR4 及RAGE 來增加PPARγ 的負向調控和collagen II 表現減少所媒介的發炎反應,證明了TLR4、RAGE 和PPARγ 在由於AGEs 的堆積所引起退化性關節炎致病過程中扮演著重要的角色。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:17:48Z (GMT). No. of bitstreams: 1 ntu-102-F96447013-1.pdf: 4620627 bytes, checksum: f17f063967e4babe5a9a540e7717ede4 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract vi Abbreviation x 1. Introduction 1 [Figure 1.1] Osteoarthritis exhibits an imbalance in cartilage matrix turnover 8 [Figure 1.2] COX-2 and iNOS expression in the chondrocyte is induced by inflammatory mediators such as IL-1β and TNF-α 8 [Figure 1.3] Formation of AGEs 9 [Figure 1.4] Current osteoarthritis treatment options 9 [Figure 1.5] Chemical structure of EGb761 10 [Figure 1.6] Chemical structure of honokiol 10 [Table 1.1] Cytokines involved in the pathophysiology of OA 11 2. Materials and Methods 12 2.1. Ethics statement 12 2.2. Reagents 12 2.3. Isolation and culture of chondrocytes from human articular cartilage 13 2.4. Preparation of AGEs 14 2.5. Cell viability assay 14 2.6. Measurement of NO production 14 2.7. Measurement of PGE2 production 15 2.8. Measurements of IL-6 production 15 2.9. Measurements of MMP-13 production 15 2.10. Western blot analysis 16 2.11. Preparation of nuclear extracts and NF-κB activation measurement 16 2.12. Experimental animals and surgical procedures 17 2.13. Histological analysis and immunohistochemistry 18 2.14. Histological examination 19 2.15. Statistics 19 3. Results and discussion 20 3.1. EGb761 inhibits inflammatory responses in human chondrocytes and shows chondroprotection in osteoarthritic rat knee 20 3.1.1. Results 20 3.1.1.1. EGb761 and its active components inhibit inflammatory responses in human chondrocytes 20 3.1.1.2. EGb761 and its active components suppress the activation of TLR4/TRAF6 and NF-κB signaling pathway in human chondrocytes 20 3.1.1.3. EGb761 suppresses IL-1β-induced inflammatory responses in human chondrocytes 21 3.1.1.4. EGb761 shows an anti-Inflammatory effect in a rat OA model 21 3.1.2. Discussion 22 [Figure 3.1.1] 26 [Figure 3.1.2] 27 [Figure 3.1.3] 28 [Figure 3.1.4] 29 [Figure 3.1.5] 30 [Figure 3.1.6] 31 [Figure 3.1.7] 32 [Figure 3.1.8] 33 [Figure 3.1.9] 34 3.2. Honokiol, a low molecular weight natural product, prevents inflammatory response and cartilage matrix degradation in human osteoarthritis chondrocytes 35 3.2.1. Results 35 3.2.1.1. Inhibitory effects of honokiol on IL-1β-induced productions of NO and PGE2 and expressions of iNOS and COX-2 in human OA chondrocytes. 35 3.2.1.2. Honokiol suppressed IL-1β-stimulated inflammatory responses through inhibition of IKK/IκBα/NF-κB signaling. 36 3.2.1.3. Honokiol inhibited IL-1β-induced productions of IL-6 and MMP-13 and the reduction expression of collagen II. 36 3.2.2. Discussion 37 [Figure 3.2.1] 41 [Figure 3.2.2] 43 [Figure 3.2.3] 44 [Figure 3.2.4] 45 [Figure 3.2.5] 46 3.3. Advanced glycation end products induce peroxisome proliferator-activated receptor down-regulation-related inflammatory signals in human chondrocytes via toll-like receptor-4 and receptor for advanced glycation end products 47 3.3.1. Results 47 3.3.1.1. AGEs induce inflammatory responses in human OA chondrocytes. 47 3.3.1.2. Involvement of TLR4 and RAGE in AGEs-increased inflammatory responses in human OA chondrocytes. 48 3.3.1.3. AGEs down-regulate PPARγ expression via TLR4 and RAGE in human OA chondrocytes. 48 3.3.1.4. PPARγ agonist pioglitazone reverses the AGEs-increased inflammatory responses in human OA chondrocytes. 49 3.3.1.5. Involvement of MAPK signaling in AGEs-induced PPARγ down-regulation. 50 3.3.2. Discussion 51 [Figure 3.3.1] 56 [Figure 3.3.2] 57 [Figure 3.3.3] 58 [Figure 3.3.4] 60 [Figure 3.3.5] 62 [Figure 3.3.6] 64 [Figure 3.3.7] 65 [Figure 3.3.8] 67 [Figure 3.3.9] 69 [Figure 3.3.10] 71 4. Conclusion and future perspectives 72 [Figure] The proposed schematic representation of our study 74 5. References 75 List of publications 93 | |
| dc.language.iso | en | |
| dc.title | 發炎及糖化終產物對於軟骨細胞之病理作用機制及治療之探討 | zh_TW |
| dc.title | Studies on the pathological mechanisms and therapy of
inflammation and advanced glycation end products on chondrocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊榮森,蕭水銀,符文美,湯智昕 | |
| dc.subject.keyword | 退化性關節炎,軟骨細胞,發炎,銀杏萃取物,厚朴酚,糖化終產物,過氧化?增生物基活受體, | zh_TW |
| dc.subject.keyword | osteoarthritis,chondrocyte,inflammation,EGb761,honokiol,advanced glycation end products,PPARγ, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-07-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
