請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17513完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | Po-Cheng Chen | en |
| dc.contributor.author | 陳柏丞 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:17:45Z | - |
| dc.date.copyright | 2013-08-08 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-26 | |
| dc.identifier.citation | 1. Angres B (2005) Cell microarrays. Expert Rev Mol Diagn 5: 769-779. 2. Hancock MK, Kopp L, Bi K (2009) High-throughput screening compatible cell-based assay for interrogating activated notch signaling. Assay Drug Dev Technol 7: 68-79. 3. Misawa N, Kafi AK, Hattori M, Miura K, Masuda K, et al. (2010) Rapid and high-sensitivity cell-based assays of protein-protein interactions using split click beetle luciferase complementation: an approach to the study of G-protein-coupled receptors. Anal Chem 82: 2552-2560. 4. Clemons PA (2004) Complex phenotypic assays in high-throughput screening. Curr Opin Chem Biol 8: 334-338. 5. Engel JC, Ang KK, Chen S, Arkin MR, McKerrow JH, et al. (2010) Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas' disease. Antimicrob Agents Chemother 54: 3326-3334. 6. Zhu PJ, Zheng W, Auld DS, Jadhav A, Macarthur R, et al. (2008) A miniaturized glucocorticoid receptor translocation assay using enzymatic fragment complementation evaluated with qHTS. Comb Chem High Throughput Screen 11: 545-559. 7. Ziauddin J, Sabatini DM (2001) Microarrays of cells expressing defined cDNAs. Nature 411: 107-110. 8. Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, et al. (2003) RNAi microarray analysis in cultured mammalian cells. Genome Res 13: 2341-2347. 9. Cheng X, Guerasimova A, Manke T, Rosenstiel P, Haas S, et al. (2010) Screening of human gene promoter activities using transfected-cell arrays. Gene 450: 48-54. 10. Sipehia R FTIR-ATR spectra of protein A immobilized on to functionalized polypropylene membranes by gaseous plasma of oxygen and of anhydrous ammonia. Biomaterials, artificial cells, and artificial organs 16: 955-966. 11. Wheeler D, Bailey S, Guertin D, Carpenter A, Higgins C, et al. (2004) RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells. Nature Methods 1: 127-132. 12. Reymann J, Beil N, Beneke J, Kaletta PP, Burkert K, et al. (2009) Next-generation 9216-microwell cell arrays for high-content screening microscopy. Biotechniques 47: 877-878. 13. Sakai Y, Yoshida S, Yoshiura Y, Mori R, Tamura T, et al. (2010) Effect of microwell chip structure on cell microsphere production of various animal cells. J Biosci Bioeng 110: 223-229. 14. Wu J, Wheeldon I, Guo Y, Lu T, Du Y, et al. (2011) A sandwiched microarray platform for benchtop cell-based high throughput screening. Biomaterials 32: 841-848. 15. Wood DK, Weingeist DM, Bhatia SN, Engelward BP (2010) Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci U S A 107: 10008-10013. 16. Chou H-C, Yan T-R, Chen K-S (2009) Detecting cells on the surface of a silver electrode quartz crystal microbalance using plasma treatment and graft polymerization. Colloids and surfaces B, Biointerfaces 73: 244-249. 17. D C S Bien PVR, S J N Mitchell and H S Gamble (2003) Characterization of masking materials for deep glass micromachining. JOURNAL OF MICROMECHANICS AND MICROENGINEERING 13: S34-S40. 18. Voskerician G, Shive MS, Shawgo RS, von Recum H, Anderson JM, et al. (2003) Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24: 1959-1967. 19. Ziegler-Heitbrock HW, Sternsdorf T, Liese J, Belohradsky B, Weber C, et al. (1993) Pyrrolidine dithiocarbamate inhibits NF-kappa B mobilization and TNF production in human monocytes. J Immunol 151: 6986-6993. 20. Pahl HL (1999) Activators and target genes of Rel/NF-kB transcription factors. Oncogene 18: 6853-6866. 21. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, et al. (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352: 786-792. 22. Fu YN, Yeh CL, Cheng HH, Yang CH, Tsai SF, et al. (2008) EGFR mutants found in non-small cell lung cancer show different levels of sensitivity to suppression of Src: implications in targeting therapy. Oncogene 27: 957-965. 23. Tracy S, Mukohara T, Hansen M, Meyerson M, Johnson BE, et al. (2004) Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res 64: 7241-7244. 24. Zhu XF, Liu ZC, Xie BF, Li ZM, Feng GK, et al. (2001) EGFR tyrosine kinase inhibitor AG1478 inhibits cell proliferation and arrests cell cycle in nasopharyngeal carcinoma cells. Cancer Lett 169: 27-32. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17513 | - |
| dc.description.abstract | 儘管在高通量藥物篩選以及進行和疾病相關的基因功能研究時,細胞表現型篩選平台已經越來越被普遍利用,但是受限於它複雜的操作步驟與昂貴的花費,大部分的實驗室仍無法進行此類型實驗;因此,我們希望開發出簡單且以晶片型式進行的細胞表現型篩選平台。首先,我們利用冷電漿(plasma)表面改質的技術開發出可進行反轉殖(reverse transfection)之菌落形式(colonial)的細胞微陣列晶片,以點放在聚丙烯(polypropylene) 薄膜上的刀豆素A(concanavalin A)讓S2 (Drosophila Schneider 2) 細胞可以附著在聚丙烯薄膜上面生長並進行質體(plasmid)DNA或小干擾RNA(Small interfering RNA;siRNA)之反轉殖實驗。 為了發展更高密度的細胞微陣列晶片,我們使用微機電系統(micro-electro-mechanical systems)技術,將光阻塗附在玻璃上製造微孔洞(microwell)晶片,並進行細胞基因表現(gene expression)與基因減弱(gene knockdown)的實驗。接著,藉由微機電系統技術,我們研發出與微孔洞晶片互補的微管柱(microcolumn)晶片,透過微管柱結構可以對生長在微孔洞中的細胞釋放藥物。我們利用塗附不同的上皮細胞生長因子接收器(epidermal growth factor receptor)之活性抑制劑在微管柱上,對微孔洞中的細胞進行藥物釋放測試,結果顯示可有效抑制上皮細胞生長因子接收器活性,證明此結構能提供高效率高通量的藥物篩選功能。因此,以上新開發的細胞表現型篩選平台,可以提供簡便有效率的基因功能分析與藥物篩選研究。 | zh_TW |
| dc.description.abstract | Although cell-based assay is becoming more popular for high-throughput drug screening and the functional characterization of disease-associated genes, most researchers in these areas do not use it because it is a complex and expensive process. We wanted to create a simple method of performing an on-chip cell-based assay. To do this, we developed a colonial cell microarray for reverse transfection assays with surface modification by plasma treatment. A colonial cell microarray of Drosophila Schneider 2 (S2) cells on a polypropylene (PP) thin film was demonstrated. The concanavalin A (ConA) micropatterns enabled the adhesion of S2 cells on the surface, resulting in the formation of a colonial cell microarray. Subsequently, the colonial S2 cells were transfected with plasmid DNA or siRNA by reverse transfection. For more high-density cell microarrays, we used micro-electro-mechanical systems (MEMS) to fabricate a microwell array chip comprised of a glass substrate covered with a photoresist film patterned to form multiple microwells and tested it in two reverse transfection experiments, an exogenous gene expression study and an endogenous gene knockdown study. It was used effectively in both. Then, using the same MEMS technology, we fabricated a complementary microcolumn array to be used as a drug carrier device to topically apply drugs to cells cultured in the microwell array. We tested the effectiveness of microwell-microcolumn on-chip cell-based assay by using it in experiments to identify epidermal growth factor receptor (EGFR) activity inhibitors, for which it was found to provide effective high throughput and high content functional screening. In conclusion, these new methods of cell-based screening proved to be a simple and efficient method of characterizing gene function and discovering drug leads. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:17:45Z (GMT). No. of bitstreams: 1 ntu-102-D93548017-1.pdf: 7992691 bytes, checksum: ef8f8e46f6e4c7cd52d569d106c2c729 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………... i 中文摘要…………………………………………………………………………...…ii Abstract…………………………………………………………………………….iii List of Tables…………………………………………………………………………vi List of Figures………………………………………………………………….…vii Chapter 1 Introduction ............................................................................................ 1 Chapter 2 Materials and methods ........................................................................... 4 2.1 Plasma treatment…………….................................................................. 4 2.2 The hydrophilic analysis ......................................................................... 4 2.3 Fabrication of colonial cell microarray ................................................... 4 2.4 Reverse transfection on the colonial cell microarray .............................. 4 2.5 Microarray chip fabrication ……............................................................. 5 2.6 Adhesion test ........................................................................................... 6 2.7 Plasmid and cell lines.............................................................................. 6 2.8 Reverse transfection on the microwell array .......................................... 6 2.9 Drug treatment by microcolumn ............................................................. 7 2.10 Image acquisition and statistical analysis .............................................. 8 Chapter 3 Results and discussion ........................................................................... 9 3.1 Generation of colonial cell microarray..................................................... 9 3.2 Reverse transfection on colonial cell microarray..................................... 9 3.3 Fabrication of MEMS-based microwell and microcolumn arrays…...... 10 3.4 Adhesion test of microwell arrays in cell culture medium...................... 10 3.5 Cell culturing in microwell array............................................................. 11 3.6 Reverse transferction in microwell array................................................. 13 3.7 Drug release in microcolumn array......................................................... 13 3.8 An on-chip cell-based screening of EGFR activity inhibitors……..……14 Chapter 4 Conclusion ............................................................................................. 16 Reference …...………...………………………………...………...………...…….… 17 Table …………………………………………………………………………………20 Figure ………………………………………………………………………………..21 Appendix……………………………………………………………………………..40 | |
| dc.language.iso | en | |
| dc.title | 高通量細胞表現型篩選平台 | zh_TW |
| dc.title | High-throughput cell-based assays | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 莊志立 | |
| dc.contributor.oralexamcommittee | 陳克紹,林晉,黃意真 | |
| dc.subject.keyword | 細胞表現型篩選平台,冷電漿,細胞微陣列晶片,微機電系統,微孔洞,微管柱, | zh_TW |
| dc.subject.keyword | cell-based assay,plasma,cell microarray,MEMS,microwell,microcolumn, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
