請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17498
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張崇毅(Chung-I Chang) | |
dc.contributor.author | Jiun-Shyang Leou | en |
dc.contributor.author | 柳鈞翔 | zh_TW |
dc.date.accessioned | 2021-06-08T00:16:41Z | - |
dc.date.copyright | 2020-08-11 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-05 | |
dc.identifier.citation | 1. Chiu, M. L., Goulet, D. R., Teplyakov, A., and Gilliland, G. L. (2019) Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 8 2. Schur, P. H. (1988) IgG subclasses. A historical perspective. Monogr Allergy 23, 1-11 3. Martinez, T., Guo, A., Allen, M. J., Han, M., Pace, D., Jones, J., Gillespie, R., Ketchem, R. R., Zhang, Y., and Balland, A. (2008) Disulfide connectivity of human immunoglobulin G2 structural isoforms. Biochemistry 47, 7496-7508 4. Silva, J. P., Vetterlein, O., Jose, J., Peters, S., and Kirby, H. (2015) The S228P mutation prevents in vivo and in vitro IgG4 Fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation. J Biol Chem 290, 5462-5469 5. Hargreaves, C. E., Rose-Zerilli, M. J., Machado, L. R., Iriyama, C., Hollox, E. J., Cragg, M. S., and Strefford, J. C. (2015) Fcgamma receptors: genetic variation, function, and disease. Immunol Rev 268, 6-24 6. Lu, J., and Kishore, U. (2017) C1 Complex: An Adaptable Proteolytic Module for Complement and Non-Complement Functions. Front Immunol 8, 592 7. Stapleton, N. M., Einarsdottir, H. K., Stemerding, A. M., and Vidarsson, G. (2015) The multiple facets of FcRn in immunity. Immunol Rev 268, 253-268 8. Daeron, M. (1997) Fc receptor biology. Annu Rev Immunol 15, 203-234 9. Nimmerjahn, F., and Ravetch, J. V. (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510-1512 10. Corrales-Aguilar, E., Hoffmann, K., and Hengel, H. (2014) CMV-encoded Fcgamma receptors: modulators at the interface of innate and adaptive immunity. Semin Immunopathol 36, 627-640 11. Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H., and Lambrecht, B. N. (2014) The function of Fcgamma receptors in dendritic cells and macrophages. Nat Rev Immunol 14, 94-108 12. Bruhns, P., Iannascoli, B., England, P., Mancardi, D. A., Fernandez, N., Jorieux, S., and Daeron, M. (2009) Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716-3725 13. Vidarsson, G., Dekkers, G., and Rispens, T. (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5, 520 14. Beck, G., and Habicht, G. S. (1996) Immunity and the invertebrates. Sci Am 275, 60-63, 66 15. Pancer, Z., and Cooper, M. D. (2006) The evolution of adaptive immunity. Annu Rev Immunol 24, 497-518 16. Pardoll, D. M. (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252-264 17. Topalian, S. L., Drake, C. G., and Pardoll, D. M. (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450-461 18. Sanmamed, M. F., Pastor, F., Rodriguez, A., Perez-Gracia, J. L., Rodriguez-Ruiz, M. E., Jure-Kunkel, M., and Melero, I. (2015) Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol 42, 640-655 19. Sledzinska, A., Menger, L., Bergerhoff, K., Peggs, K. S., and Quezada, S. A. (2015) Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 9, 1936-1965 20. Ceeraz, S., Nowak, E. C., and Noelle, R. J. (2013) B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 34, 556-563 21. Shih, K., Arkenau, H. T., and Infante, J. R. (2014) Clinical impact of checkpoint inhibitors as novel cancer therapies. Drugs 74, 1993-2013 22. Gao, J., Ward, J. F., Pettaway, C. A., Shi, L. Z., Subudhi, S. K., Vence, L. M., Zhao, H., Chen, J., Chen, H., Efstathiou, E., Troncoso, P., Allison, J. P., Logothetis, C. J., Wistuba, II, Sepulveda, M. A., Sun, J., Wargo, J., Blando, J., and Sharma, P. (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 23, 551-555 23. Jiang, X., Wang, J., Deng, X., Xiong, F., Ge, J., Xiang, B., Wu, X., Ma, J., Zhou, M., Li, X., Li, Y., Li, G., Xiong, W., Guo, C., and Zeng, Z. (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18, 10 24. Leach, D. R., Krummel, M. F., and Allison, J. P. (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734-1736 25. Seidel, J. A., Otsuka, A., and Kabashima, K. (2018) Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol 8, 86 26. Gordon, S. (2016) Phagocytosis: An Immunobiologic Process. Immunity 44, 463-475 27. Jutras, I., and Desjardins, M. (2005) Phagocytosis: at the crossroads of innate and adaptive immunity. Annu Rev Cell Dev Biol 21, 511-527 28. Freeman, S. A., and Grinstein, S. (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262, 193-215 29. Oldenborg, P. A., Zheleznyak, A., Fang, Y. F., Lagenaur, C. F., Gresham, H. D., and Lindberg, F. P. (2000) Role of CD47 as a marker of self on red blood cells. Science 288, 2051-2054 30. Barclay, A. N., and Van den Berg, T. K. (2014) The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32, 25-50 31. Chao, M. P., Weissman, I. L., and Majeti, R. (2012) The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol 24, 225-232 32. Feng, M., Jiang, W., Kim, B. Y. S., Zhang, C. C., Fu, Y. X., and Weissman, I. L. (2019) Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 19, 568-586 33. Majeti, R., Chao, M. P., Alizadeh, A. A., Pang, W. W., Jaiswal, S., Gibbs, K. D., Jr., van Rooijen, N., and Weissman, I. L. (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286-299 34. Gordon, S. R., Maute, R. L., Dulken, B. W., Hutter, G., George, B. M., McCracken, M. N., Gupta, R., Tsai, J. M., Sinha, R., Corey, D., Ring, A. M., Connolly, A. J., and Weissman, I. L. (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495-499 35. Barkal, A. A., Weiskopf, K., Kao, K. S., Gordon, S. R., Rosental, B., Yiu, Y. Y., George, B. M., Markovic, M., Ring, N. G., Tsai, J. M., McKenna, K. M., Ho, P. Y., Cheng, R. Z., Chen, J. Y., Barkal, L. J., Ring, A. M., Weissman, I. L., and Maute, R. L. (2018) Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19, 76-84 36. Brown, E. (2001) Integrin-associated protein (CD47): an unusual activator of G protein signaling. J Clin Invest 107, 1499-1500 37. Reinhold, M. I., Lindberg, F. P., Plas, D., Reynolds, S., Peters, M. G., and Brown, E. J. (1995) In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J Cell Sci 108 ( Pt 11), 3419-3425 38. Brown, E. J., and Frazier, W. A. (2001) Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11, 130-135 39. Jaiswal, S., Jamieson, C. H., Pang, W. W., Park, C. Y., Chao, M. P., Majeti, R., Traver, D., van Rooijen, N., and Weissman, I. L. (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271-285 40. Chao, M. P., Alizadeh, A. A., Tang, C., Jan, M., Weissman-Tsukamoto, R., Zhao, F., Park, C. Y., Weissman, I. L., and Majeti, R. (2011) Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 71, 1374-1384 41. Chao, M. P., Alizadeh, A. A., Tang, C., Myklebust, J. H., Varghese, B., Gill, S., Jan, M., Cha, A. C., Chan, C. K., Tan, B. T., Park, C. Y., Zhao, F., Kohrt, H. E., Malumbres, R., Briones, J., Gascoyne, R. D., Lossos, I. S., Levy, R., Weissman, I. L., and Majeti, R. (2010) Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699-713 42. Rendtlew Danielsen, J. M., Knudsen, L. M., Dahl, I. M., Lodahl, M., and Rasmussen, T. (2007) Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma. Br J Haematol 138, 756-760 43. Chan, K. S., Espinosa, I., Chao, M., Wong, D., Ailles, L., Diehn, M., Gill, H., Presti, J., Jr., Chang, H. Y., van de Rijn, M., Shortliffe, L., and Weissman, I. L. (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A 106, 14016-14021 44. Gao, A. G., Lindberg, F. P., Dimitry, J. M., Brown, E. J., and Frazier, W. A. (1996) Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol 135, 533-544 45. Gao, L., Chen, K., Gao, Q., Wang, X., Sun, J., and Yang, Y. G. (2017) CD47 deficiency in tumor stroma promotes tumor progression by enhancing angiogenesis. Oncotarget 8, 22406-22413 46. Adams, S., van der Laan, L. J., Vernon-Wilson, E., Renardel de Lavalette, C., Dopp, E. A., Dijkstra, C. D., Simmons, D. L., and van den Berg, T. K. (1998) Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J Immunol 161, 1853-1859 47. Barclay, A. N., and Brown, M. H. (2006) The SIRP family of receptors and immune regulation. Nat Rev Immunol 6, 457-464 48. Matlung, H. L., Szilagyi, K., Barclay, N. A., and van den Berg, T. K. (2017) The CD47-SIRPalpha signaling axis as an innate immune checkpoint in cancer. Immunol Rev 276, 145-164 49. Wang, H. S., Pei, F., Chen, Z., and Zhang, L. (2016) Increased Apoptosis of Inflamed Odontoblasts Is Associated with CD47 Loss. J Dent Res 95, 697-703 50. Sick, E., Boukhari, A., Deramaudt, T., Ronde, P., Bucher, B., Andre, P., Gies, J. P., and Takeda, K. (2011) Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway. Glia 59, 308-319 51. Kaur, S., Soto-Pantoja, D. R., Stein, E. V., Liu, C., Elkahloun, A. G., Pendrak, M. L., Nicolae, A., Singh, S. P., Nie, Z., Levens, D., Isenberg, J. S., and Roberts, D. D. (2013) Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors. Sci Rep 3, 1673 52. Rebres, R. A., Kajihara, K., and Brown, E. J. (2005) Novel CD47-dependent intercellular adhesion modulates cell migration. J Cell Physiol 205, 182-193 53. Sick, E., Jeanne, A., Schneider, C., Dedieu, S., Takeda, K., and Martiny, L. (2012) CD47 update: a multifaceted actor in the tumour microenvironment of potential therapeutic interest. Br J Pharmacol 167, 1415-1430 54. Zhang, H., Li, F., Yang, Y., Chen, J., and Hu, X. (2015) SIRP/CD47 signaling in neurological disorders. Brain Res 1623, 74-80 55. Kojima, Y., Volkmer, J. P., McKenna, K., Civelek, M., Lusis, A. J., Miller, C. L., Direnzo, D., Nanda, V., Ye, J., Connolly, A. J., Schadt, E. E., Quertermous, T., Betancur, P., Maegdefessel, L., Matic, L. P., Hedin, U., Weissman, I. L., and Leeper, N. J. (2016) CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86-90 56. Blazar, B. R., Lindberg, F. P., Ingulli, E., Panoskaltsis-Mortari, A., Oldenborg, P. A., Iizuka, K., Yokoyama, W. M., and Taylor, P. A. (2001) CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J Exp Med 194, 541-549 57. Liu, J., Wang, L., Zhao, F., Tseng, S., Narayanan, C., Shura, L., Willingham, S., Howard, M., Prohaska, S., Volkmer, J., Chao, M., Weissman, I. L., and Majeti, R. (2015) Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS One 10, e0137345 58. Petrova, P. S., Viller, N. N., Wong, M., Pang, X., Lin, G. H., Dodge, K., Chai, V., Chen, H., Lee, V., House, V., Vigo, N. T., Jin, D., Mutukura, T., Charbonneau, M., Truong, T., Viau, S., Johnson, L. D., Linderoth, E., Sievers, E. L., Maleki Vareki, S., Figueredo, R., Pampillo, M., Koropatnick, J., Trudel, S., Mbong, N., Jin, L., Wang, J. C., and Uger, R. A. (2017) TTI-621 (SIRPalphaFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding. Clin Cancer Res 23, 1068-1079 59. Piccione, E. C., Juarez, S., Liu, J., Tseng, S., Ryan, C. E., Narayanan, C., Wang, L., Weiskopf, K., and Majeti, R. (2015) A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs 7, 946-956 60. Sim, J., Sockolosky, J. T., Sangalang, E., Izquierdo, S., Pedersen, D., Harriman, W., Wibowo, A. S., Carter, J., Madan, A., Doyle, L., Harrabi, O., Kauder, S. E., Chen, A., Kuo, T. C., Wan, H., and Pons, J. (2019) Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor SIRPalpha. MAbs 11, 1036-1052 61. Chao, M. P., Jaiswal, S., Weissman-Tsukamoto, R., Alizadeh, A. A., Gentles, A. J., Volkmer, J., Weiskopf, K., Willingham, S. B., Raveh, T., Park, C. Y., Majeti, R., and Weissman, I. L. (2010) Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2, 63ra94 62. Kaur, S., Elkahloun, A. G., Singh, S. P., Chen, Q. R., Meerzaman, D. M., Song, T., Manu, N., Wu, W., Mannan, P., Garfield, S. H., and Roberts, D. D. (2016) A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget 7, 10133-10152 63. Latour, S., Tanaka, H., Demeure, C., Mateo, V., Rubio, M., Brown, E. J., Maliszewski, C., Lindberg, F. P., Oldenborg, A., Ullrich, A., Delespesse, G., and Sarfati, M. (2001) Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-alpha: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J Immunol 167, 2547-2554 64. Matozaki, T., Murata, Y., Okazawa, H., and Ohnishi, H. (2009) Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol 19, 72-80 65. Pietsch, E. C., Dong, J., Cardoso, R., Zhang, X., Chin, D., Hawkins, R., Dinh, T., Zhou, M., Strake, B., Feng, P. H., Rocca, M., Santos, C. D., Shan, X., Danet-Desnoyers, G., Shi, F., Kaiser, E., Millar, H. J., Fenton, S., Swanson, R., Nemeth, J. A., and Attar, R. M. (2017) Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies. Blood Cancer J 7, e536 66. Sikic, B. I., Lakhani, N., Patnaik, A., Shah, S. A., Chandana, S. R., Rasco, D., Colevas, A. D., O'Rourke, T., Narayanan, S., Papadopoulos, K., Fisher, G. A., Villalobos, V., Prohaska, S. S., Howard, M., Beeram, M., Chao, M. P., Agoram, B., Chen, J. Y., Huang, J., Axt, M., Liu, J., Volkmer, J. P., Majeti, R., Weissman, I. L., Takimoto, C. H., Supan, D., Wakelee, H. A., Aoki, R., Pegram, M. D., and Padda, S. K. (2019) First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. J Clin Oncol 37, 946-953 67. Huang, Y., Ma, Y., Gao, P., and Yao, Z. (2017) Targeting CD47: the achievements and concerns of current studies on cancer immunotherapy. J Thorac Dis 9, E168-E174 68. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315-1317 69. Smith, G. P., and Petrenko, V. A. (1997) Phage Display. Chem Rev 97, 391-410 70. Kehoe, J. W., and Kay, B. K. (2005) Filamentous phage display in the new millennium. Chem Rev 105, 4056-4072 71. Azzazy, H. M., and Highsmith, W. E., Jr. (2002) Phage display technology: clinical applications and recent innovations. Clin Biochem 35, 425-445 72. Reader, R. H., Workman, R. G., Maddison, B. C., and Gough, K. C. (2019) Advances in the Production and Batch Reformatting of Phage Antibody Libraries. Mol Biotechnol 61, 801-815 73. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552-554 74. Dooley, H., Flajnik, M. F., and Porter, A. J. (2003) Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display. Mol Immunol 40, 25-33 75. Sidhu, S. S. (2001) Engineering M13 for phage display. Biomol Eng 18, 57-63 76. Mandrup, O. A., Friis, N. A., Lykkemark, S., Just, J., and Kristensen, P. (2013) A novel heavy domain antibody library with functionally optimized complementarity determining regions. PLoS One 8, e76834 77. Abraham, R., Buxbaum, S., Link, J., Smith, R., Venti, C., and Darsley, M. (1996) Determination of binding constants of diabodies directed against prostate-specific antigen using electrochemiluminescence-based immunoassays. J Mol Recognit 9, 456-461 78. Barbas, C. F., 3rd, Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88, 7978-7982 79. Rauchenberger, R., Borges, E., Thomassen-Wolf, E., Rom, E., Adar, R., Yaniv, Y., Malka, M., Chumakov, I., Kotzer, S., Resnitzky, D., Knappik, A., Reiffert, S., Prassler, J., Jury, K., Waldherr, D., Bauer, S., Kretzschmar, T., Yayon, A., and Rothe, C. (2003) Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. J Biol Chem 278, 38194-38205 80. Tiller, T., Schuster, I., Deppe, D., Siegers, K., Strohner, R., Herrmann, T., Berenguer, M., Poujol, D., Stehle, J., Stark, Y., Hessling, M., Daubert, D., Felderer, K., Kaden, S., Kolln, J., Enzelberger, M., and Urlinger, S. (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5, 445-470 81. Rothe, C., Urlinger, S., Lohning, C., Prassler, J., Stark, Y., Jager, U., Hubner, B., Bardroff, M., Pradel, I., Boss, M., Bittlingmaier, R., Bataa, T., Frisch, C., Brocks, B., Honegger, A., and Urban, M. (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376, 1182-1200 82. Frenzel, A., Kugler, J., Helmsing, S., Meier, D., Schirrmann, T., Hust, M., and Dubel, S. (2017) Designing Human Antibodies by Phage Display. Transfus Med Hemother 44, 312-318 83. Weiskopf, K., Jahchan, N. S., Schnorr, P. J., Cristea, S., Ring, A. M., Maute, R. L., Volkmer, A. K., Volkmer, J. P., Liu, J., Lim, J. S., Yang, D., Seitz, G., Nguyen, T., Wu, D., Jude, K., Guerston, H., Barkal, A., Trapani, F., George, J., Poirier, J. T., Gardner, E. E., Miles, L. A., de Stanchina, E., Lofgren, S. M., Vogel, H., Winslow, M. M., Dive, C., Thomas, R. K., Rudin, C. M., van de Rijn, M., Majeti, R., Garcia, K. C., Weissman, I. L., and Sage, J. (2016) CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 126, 2610-2620 84. Hatherley, D., Graham, S. C., Turner, J., Harlos, K., Stuart, D. I., and Barclay, A. N. (2008) Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol Cell 31, 266-277 85. Shen, Y., Yang, X., Dong, N., Xie, X., Bai, X., and Shi, Y. (2007) Generation and selection of immunized Fab phage display library against human B cell lymphoma. Cell Res 17, 650-660 86. Yamanaka, H. I., Kirii, Y., and Ohmoto, H. (1995) An improved phage display antibody cloning system using newly designed PCR primers optimized for Pfu DNA polymerase. J Biochem 117, 1218-1227 87. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R., and Chandra, A. B. (2020) Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers (Basel) 12 88. Weiner, L. M., Surana, R., and Wang, S. (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10, 317-327 89. Hong, B., Wu, Y., Li, W., Wang, X., Wen, Y., Jiang, S., Dimitrov, D. S., and Ying, T. (2018) In-Depth Analysis of Human Neonatal and Adult IgM Antibody Repertoires. Front Immunol 9, 128 90. Mouro-Chanteloup, I., Delaunay, J., Gane, P., Nicolas, V., Johansen, M., Brown, E. J., Peters, L. L., Van Kim, C. L., Cartron, J. P., and Colin, Y. (2003) Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47. Blood 101, 338-344 91. Burger, P., Hilarius-Stokman, P., de Korte, D., van den Berg, T. K., and van Bruggen, R. (2012) CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood 119, 5512-5521 92. Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., and Pietenpol, J. A. (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121, 2750-2767 93. Yuan, J., Shi, X., Chen, C., He, H., Liu, L., Wu, J., and Yan, H. (2019) High expression of CD47 in triple negative breast cancer is associated with epithelial-mesenchymal transition and poor prognosis. Oncol Lett 18, 3249-3255 94. Bayat Mokhtari, R., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., and Yeger, H. (2017) Combination therapy in combating cancer. Oncotarget 8, 38022-38043 95. Modjtahedi, H., Ali, S., and Essapen, S. (2012) Therapeutic application of monoclonal antibodies in cancer: advances and challenges. Br Med Bull 104, 41-59 96. He, Y., Liu, S., Mattei, J., Bunn, P. A., Jr., Zhou, C., and Chan, D. (2018) The combination of anti-KIR monoclonal antibodies with anti-PD-1/PD-L1 monoclonal antibodies could be a critical breakthrough in overcoming tumor immune escape in NSCLC. Drug Des Devel Ther 12, 981-986 97. Liu, J. F., Herold, C., Gray, K. P., Penson, R. T., Horowitz, N., Konstantinopoulos, P. A., Castro, C. M., Hill, S. J., Curtis, J., Luo, W., Matulonis, U. A., Cannistra, S. A., and Dizon, D. S. (2019) Assessment of Combined Nivolumab and Bevacizumab in Relapsed Ovarian Cancer: A Phase 2 Clinical Trial. JAMA Oncol 98. Advani, R., Flinn, I., Popplewell, L., Forero, A., Bartlett, N. L., Ghosh, N., Kline, J., Roschewski, M., LaCasce, A., Collins, G. P., Tran, T., Lynn, J., Chen, J. Y., Volkmer, J. P., Agoram, B., Huang, J., Majeti, R., Weissman, I. L., Takimoto, C. H., Chao, M. P., and Smith, S. M. (2018) CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma. N Engl J Med 379, 1711-1721 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17498 | - |
dc.description.abstract | 先前的研究發現癌症細胞表面蛋白CD47與巨噬細胞表面上的SIRP-α蛋白結合會使得癌症細胞抑制巨噬細胞的吞噬作用進而逃脫免疫細胞的攻擊,而這個結合作用被視為髓細胞特有的免疫檢查點 (myeloid specific immune checkpoint),目前有研究發現利用抗體去阻斷CD47與SIRP-α蛋白結合能夠促進巨噬細胞對癌症細胞的吞噬作用,然而此抗體會造成紅血球凝集而造成安全上的危害。因此抗體若能同時具有功效及安全性的話則會是個具有癌症治療潛力的抗體,為此,在本研究中,先開發了癌症病人噬菌體Fab抗體庫 (cancer specific phage-displayed Fab library),且以此找尋到具有高親和力及專一性的抗體,之後將CwP1A1, CwP2F12及BrP1F11抗體可結晶區域片段(Fragment crystallizable region)改成IgG4的型式,進一步分析此三個IgG4 format抗體具有抑制CD47與SIRP-α的結合的能力,也能夠誘導巨噬細胞利用吞噬作用對白血病細胞株 (Leukemia cell line) Jurkat及 HL-60進行毒殺作用,並且不會造成抗體依賴型細胞介導的細胞毒性作用(antibody-dependent cell-mediated cytotoxicity, ADCC) 及細胞凋亡(apoptosis)。之後,紅血球凝集實驗結果發現我們所開發之抗體CwP1A1及BrP1F11不同於目前其他開發的抗體,並不會造成紅血球不正常的凝集,因此,之後若進行臨床試驗時則可以大大的降低其副作用風險。最後,在異體移植白血病及三陰性乳癌細胞株個別於重症聯合免疫缺陷小鼠 (SCID mice) 及裸鼠模式上,CwP1A1抗體具有非常好的抑制腫瘤效果,也因此,我們期許在之後能以此基礎去研發、改良出具有更好抑制腫瘤且具有更低副作用的免疫療法藥物。 | zh_TW |
dc.description.abstract | The CD47/signal regulatory protein alpha (SIRP-) axis is a key molecular interaction that inhibits antitumor activation by macrophages and myeloid cells, thereby acting as a myeloid-specific immune checkpoint. Blocking CD47/ SIRP- interaction promotes phagocytosis of tumor cells. Currently, CD47 antibody in clinical trial showed RBC agglutination and this effect may cause safety risk issue. In this thesis new human CD47 blocking antibodies were identified from a cancer patient antibody Fab library. The anti-CD47 antibodies exhibited high affinity and specificity against recombinant and cell surface CD47, which are able to inhibit the CD47-SIRP- interaction comparable to Hu5F9-G4, which is a humanized CD47 blocking antibody currently under clinical investigations. The human IgG4-reformatted CD47 antibodies, CwP1A1, CwP2F12, and BrP1F11, were generated dependent on the result of affinity screening. The IgG4-reformatted CD47 blocking antibody were confirmed to be effective in treatment of a cancer since it is found that the IgG4-reformatted CD47 blocking antibody treated cancer cells, such as Jurkat-1 or HL-60 cells, and induced robust phagocytosis activity explicated by polarized THP-1 macrophages as well as peripheral blood mononuclear cell (PBMC), but not antibody-dependent cell-mediated cytotoxicity (ADCC) and apoptosis of tested cancer cells, in vitro. Furthermore, CwP1A1 and BrP1F11 did not induce hemagglutination of human RBCs compared to Hu5F9-G4. Finally, CwP1A1 showed the good anti-tumor activities in both hematologic and solid tumor cell lines mouse xenograft model. In the future, we will further confirm the safety of these antibodies and further study these antibodies in clinical trials. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:16:41Z (GMT). No. of bitstreams: 1 U0001-0508202010310200.pdf: 3339890 bytes, checksum: 9646e667e38b0f2da37ef9d618171b95 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 國立台灣大學博士學位論文口試委員會審定書 I
謝誌 II 中文摘要 III Abstract IV Abbreviation V Contents VIII List of Figures XI List of Tables XIII Chapter 1. Introduction and Research Background 1 1.1 Antibody structure and function 1 1.2 Innate and adaptive immunity 3 1.3 Immune checkpoint 4 1.4 Phagocytosis 6 1.5 CD47 7 1.6 CD47-SIRPα interaction 9 1.7 CD47 antibody progress 10 1.8 Phage display 11 1.9 Aims of study 14 Chapter 2. Materials and Methods 16 2.1 Construction of a human phage antibody library 16 2.2 Human antibody Fab library bio-panning against recombinant CD47 17 2.3 Enrichment test by phage ELISA 18 2.4 CD47 binder screening, sequencing analysis and reformatting 18 2.5 Cell culture, Antibody expression and purification 19 2.6 CD47 binding study 20 2.7 Cell Surface antigen-binding assay 21 2.8 Competition assay of CD47 binding using flow cytometry 21 2.9 The CD47-SIRP-α interaction blocking assay 22 2.10 In vitro antibody-mediated phagocytosis assay 22 2.11 Antibody-dependent cell-mediated cytotoxicity (ADCC) assay 23 2.12 Apoptosis assay 24 2.13 RBC surface antigen-binding assay and RBC aggregation assay 24 2.14 In vitro anti-CD47 antibody efficacy evaluation using mouse xenograft model 25 Chapter 3. Results 27 3.1 Human Fab library construction 27 3.2 Selection of a Fab phage antibody library specific for CD47 proteins 27 3.3 Human anti-CD47 antibodies binding affinity and specificity analysis 28 3.4 Human CD47 antibodies on CD47-SIRPα interaction blocking activities 30 3.5 Human CD47 antibodies promotes phagocytosis of cancer cells 30 3.6 Human CD47 antibodies did not induce ADCC and apoptosis 31 3.7 Human CD47 antibodies did not induce RBC aggregation 32 3.8 In vivo studies of CD47 antibodies confirm anti-tumor activity 33 Chapter 4. Conclusion 36 Chapter 5. Disccusion 37 References 74 | |
dc.language.iso | en | |
dc.title | 新型人類CD47抗體開發及其癌症免疫治療應用 | zh_TW |
dc.title | The Development of Novel Human CD47 Antibodies for Cancer Immunotherapy | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳漢忠(Han-Chung Wu),郭呈欽(Cheng-Chin Kuo),李雨青(Yu-Ching Lee),莊國祥(Kuo-Hsiang Chuang) | |
dc.subject.keyword | CD47,SIRP-α,吞噬作用,紅血球凝集, | zh_TW |
dc.subject.keyword | CD47,SIRP-α,phagocytosis,RBC hemagglutination, | en |
dc.relation.page | 84 | |
dc.identifier.doi | 10.6342/NTU202002435 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-06 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0508202010310200.pdf 目前未授權公開取用 | 3.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。