請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17494完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | An-Lun Lo | en |
| dc.contributor.author | 羅安倫 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:16:26Z | - |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-29 | |
| dc.identifier.citation | 第一章
[1] Solar Cell Panels and Energy Pictures, http://www.solarcellideas.com/2013/06/different-types-of-solar-cells.html [2] Global solar, http://www.globalsolar.com/company/technology/ [3] T. Nagata and H. Murakami, Ulvac Technical Journal No.70E (2009). [4] Solar cells and nanostructured devices laboratory, http://sunlab.site.uottawa.ca/research.php [5] NREL, national cnter for photovoltaics, http://www.nrel.gov/ncpv/ [6] H. Kallmans, M. J. Pope, Chem. Phys. 30, 585 (1958). [7] C. W. Tang, Appl. Phys. Lett. 48, 183 (1986). [8] S. Gϋnes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324-1338 (2007). [9] T. J. Savenije, Solar Cells, Chapter 8. Organic solar cells. [10] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 258, 1474 (1992). [11] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Science 270, 1789 (1995). [12] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003). [13] P. J. Brown, D. S. Thomas, A.Kӧhler, J. Wilson, J. S. Kim, C.Rainsdale, H.Sirringhaus, R. H. Friend, Phys. Re V . B 67,064203 (2003). [14] S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A. J. Heeger, M. Surin, R. Lazzaroni, J. Appl. Phys.100, 114503(2006). [15] Y. He, H.Y. Chen, J. Hou, Y. Li, J. Am. Chem. Soc. 132, 1377-1382 (2010). [16] G. Zhao, Y. He, Y. Li, Adv. Mater. 22, 4355 (2010). [17] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Nature Photonics 3, 297-302 (2009). [18] M. A. Ruderer, S. Guo, R. Meier, H.-Y. Chiang, V. Korstgens, J. Wiedersich, J. Perlich, S. V. Roth, P. Muller-Buschbaum, Adv. Funct. Mater. 21, 3382 (2011). [19] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 17, 1636 (2007). [20] X. Liu, S. Huettner, Z. Rong, M. Sommer, R. H. Friend, Adv. Mater. 24, 669–674 (2012). [21] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, Nature Materials 11, 44–48 (2012). [22] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery,C. C. Chen, J. Gao, G. Li, Y. Yang, Nat Commun. 4:1446 (2013). [23] A. W. Hains, T. J. Marks, Appl. Phys. Lett. 92, 023504 (2008). [24] S. Lany, J. Osorio-Guillen, A. Zunger, Phys. Rev. B 75, 241203 (2007). [25] J. R. Manders, S. W. Tsang, M. J. Hartel, T.H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, F. So, Adv. Funct. Mater. 23: 2993–3001 (2013). [26] K. X. Steirer, P. F. Ndione, N. E. Widjonarko, M. T. Lloyd, J. Meyer, E. L. Ratcliff, A. Kahn, N. R. Armstrong, C. J. Curtis, D. S. Ginley, J. J. Berry, D. C. Olson, Adv. Energy Mater. 1, 813 (2011). 第二章 [1] B. L. Oliva, A. R. Barron, An Introduction to Solar Cell Technology, http://cnx.org/content/m41217/latest/ [2] PVEducation, http://pveducation.org/ [3] T. J. Savenije, Solar Cells, Chapter 8. Organic solar cells. [4] K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 128, 8108-8109 (2006). [5] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater.18, 789–794 (2006). [6] J. Liu, Y. Shi, Y. Yang, Adv. Funct. Mater.11, No. 6 (2001). [7] G. G.Mallairas, J. R. Salem, P. J. Brock, J. C. Scott, J. Appl. Phys.84, 1583(1998). [8] Jenny Nelson,The physics of solar cell,published by Imperial College Press. 第三章 [1] T. Ahn, H. Lee, S. H. Han, Appl. Phys. Lett. 80, 392 (2002). [2] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003). [3] T. J. Savenije, Solar Cells, Chapter 8. Organic solar cells. [4] T. Y. Chu, S. Alem, P. G. Verly, S. Wakim, J. Lu, Appl. Phys. Lett. 95, 063304 (2009). [5] Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/product/aldrich/753998?lang=enRion=TW [6] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem. 123, 9871 –9876 (2011). [7] H. Cha, D. S. Chung, S. Y. Bae, M.-J. Lee, T. K. An, J. Hwang, K. H. Kim, Y.-H. Kim, D. H. Choi, C. E. Park, Adv. Funct. Mater. 23, 1556–1565 (2013). [8] M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, A. J. Janssen, Angew. Chem. Int. Ed. 42, 3371 (2003). [9] P. H. Wӧbkenberg, D. D.C. Bradley, D. Kronholm, J. C. Hummelen, D. M. de Leeuw, M. Cӧlle, T. D. Anthopoulos, Synthetic Metals 158, 468–472 (2008). [10] S. Gϋnes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 107, 1324-1338 (2007). 第四章 [1] Z. M. Beiley, E. T. Hoke, R. Noriega, J. Dacuna, G. F. Burkhard, J. A Bartelt, A. Salleo, M. F. Toney, M. D. McGehee, Adv. Energy Mater. 1, 954–962 (2011). [2] C. I. Wu, G. R. Lee, T. W. Pi, Appl. Phys. Lett. 87, 212108 (2005). [3] B. P. Rand, J. Xue, F. Yang, S. R. Forrest, Appl. Phys. Lett. 87, 233508 (2005). [4] P. Peumans, V. Bulovic, S. R. Forrest, Appl. Phys. Lett. 76(19), 2650–2652 (2000). [5] J. Liu, Y. Shi, Y. Yang, Adv. Funct. Mater. 11, No. 6. (2001). 第五章 [1] J. G. Aiken, A. G. Jordan, J. Phys. Chem. Solids 29, 2153 (1968). [2] J.D. Desai, S.K. Min, K.D. jung, O. S. Joo, Applied Surface Science 253, 1781–1786 (2006). [3] J. R. Manders, S. W. Tsang, M. J. Hartel, T. H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, F. So, Adv. Funct. Mater. 23: 2993–3001 (2013). [4] W. K. Chen, N. L. Peterson, J. Phys. Chem. 34, 1093 (1973). [5] K. S. Kim, N. Winograd, Surf. Sci. 43, 625 (1974). [6] E. L. Ratcliff, J. Meyer, K. X. Steirer, A. Garcia, J. J. Berry, D. S. Ginley, D. C. Olson, A. Kahn, N. R. Armstrong, Chem. Mater. 23, 4988 (2011). [7] B. Sasi, K. G. Gopchandran, Nanotechnology 18, 115613 (2007). [8] L. D. Kadam, P. S. Patil, Sol. Energy Mater. Sol. Cells 69, 361 (2001) [9] M. P. de Jong, L. J. van IJzendoorn and M. J. A. d. Voigt, Appl. Phys. Lett. 77, 2255 (2000). [10] M. Jorgensen, K. Norrman, F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008). 第七章 [1] L. Dou, C.-C. Chen, K. Yoshimura, K. Ohya, W.-H. Chang, J. Gao, Y. Liu, E. Richard, Y. Yang, Macromolecules 46, 3384−3390 (2013). [2] Z.He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nature Photonics 6, 591–595 (2012). [3] M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, T. J. Marks, Proc. Natl. Acad. Sci. USA, 105, 2783-2787 (2008). [4] J. R. Manders, S. W. Tsang, M. J. Hartel, T. H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, F. So, Adv. Funct. Mater. 23: 2993–3001 (2013). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17494 | - |
| dc.description.abstract | 本篇論文探討以低能隙共軛高分子材料為主動層和氧化鎳為電洞傳輸層的本體異質接面太陽能電池特性。
首先,論文以PCDTBT和PC71BM為主動層材料之元件進行研究。藉由降低主動層的厚度,使短路電流密度與元件效率有所提升。接著探討在蒸鍍鋁電極之前,以鈣、氟化鋰以及bathocuproine (BCP) 做為緩衝層對元件特性的影響,而使用LiF和BCP做為緩衝層的元件有較高的短路電流密度,其中BCP元件效率最高,為4.19%。藉由表面形貌的控制,在主動層中加入添加劑1,6-二碘己烷(DIH)可使元件效率提升至4.57%。 第二部分以P3HT和PC61BM為主動層材料進行氧化鎳電洞傳輸層的研究。藉由X光電子頻譜 (XPS) 和紫外光電子頻譜 (UPS) 分析氧化鎳的後處理影響,使用UV Ozone後氧化鎳中的金屬陽離子空缺增加,將有助於電洞的傳導,且功函數由4.8 eV上升至5.1 eV。在UV Ozone時間為10分鐘時達到最大的填充係數與效率,和PEDOT:PSS元件相比,氧化鎳元件達到相近的效率與開路電壓、較佳的填充係數、稍小的短路電流密度。此外,氧化鎳的元件效能較PEDOT:PSS有更好的穩定度。 第三部份以PBDTTT-C-T和PC71BM為主動層材料之元件進行研究,透過主動層參數的調變如厚度、濃度等以達到最佳化的效率,為6.1%。和P3HT相比,由於PBDTTT-C-T的吸收頻譜較廣,且最高佔據分子軌域 (HOMO) 較深,因此元件有較高的短路電流密度與開路電壓。接著將氧化鎳電洞傳輸層應用在PBDTTT-C-T元件,由於使用UV Ozone時間增加會使氧化鎳穿透度降低,因此最佳的UV Ozone時間為2分鐘,效率為5.37%。雖然效率不及PEDOT:PSS元件,然而其效率維持度仍較PEDOT:PSS元件為佳。 | zh_TW |
| dc.description.abstract | The performance of bulk heterjuction (BHJ) solar cells based on low band-gap conjugated polymers and nickel oxide hole transport layers are studied in this thesis.
In the first topic of this thesis, the devices of PCDTBT mixed with PC71BM as active layer materials are investigated. By decreasing the thickness of the active layer, the short circuit current density (Jsc) and power conversion efficiency (PCE) are enhanced. Comparing the devices with calcium, lithium fluoride and bathocuproine (BCP) as cathode buffer layers before the deposition of Al electrodes, Jsc of the devices with LiF and BCP buffer layers is higher and PCE of the devices with BCP buffer layers is the highest. The PCE of the device is 4.19%. To control the morphology of the active layer, 1,6-diiodohexane(DIH) is used as an additive, which results in increased PCE to 4.57%. In the second topic, we investigate the device of P3HT: PC61BM based organic solar cells using nickel oxide (NiOx) as the hole transport layers. Via x-ray and ultraviolet photoemission spectroscopy (UPS and XPS), the effects of post-treatment applied to NiOx is investigated. UV Ozone treatment on NiOx results in more metal cation vacancies which contribute to hole transport efficiency. The work function then increases from 4.8 eV to 5.1 eV. The device with ten minutes UV Ozone treatment of the NiOx has maximum fill factor (FF) and PCE. The devices with PEDOT:PSS and the devices with NiOx have similar PCE and Voc , but the former has higher FF and slightly lower Jsc. Additionally, the stability of the devices with NiOx is better than the devices with PEDOT:PSS. In the third topic, we study the device of PBDTTT-C-T: PC71BM as the active layer materials. To achieve the optimized PCE, the active layer parameters such as thickness and concentration are tuned, resulting in the best PCE of 6.10%. Due to the broadened absorption wavelength range and deeper highest occupied molecular orbital (HOMO) of PBDTTT-C-T in comparison with P3HT, Jsc and Voc are higher of the device with PBDTTT-C-T. Then, the NiOx layer is used to replace PEDOT:PSS as the hole transport layer. Since longer UV Ozone treatment time reduces transmission of NiOx, the device with two minutes UV Ozone treatment of NiOx exhibit the optimal PCE of 5.37%. Although PCE of the NiOx device is not as good as that of the PEDOT:PSS device, the stability of the devices with NiOx is much better. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:16:26Z (GMT). No. of bitstreams: 1 ntu-102-R00941023-1.pdf: 6572784 bytes, checksum: b4fb9c623759e6e537d6324bc06800e3 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………. i
誌謝…………………………………………………………………………………… ii 摘要…………………………………………………………………………...….…... iv Abstract..………………………………………………………………………….…… v 目錄……………………………………………………………………………….…. vii 圖目錄………………………………………………………………………...………. x 表目錄………………………………………………………………………….…… xiii 第一章 緒論 1 1.1 太陽能電池簡介 1 1.2 有機太陽能電池的發展 4 1.3 研究動機 7 1.4 參考資料 8 第二章 太陽能電池理論基礎 11 2.1 太陽光譜 11 2.2 有機太陽能電池的工作原理 13 2.3 太陽能電池等效電路 15 2.4 光電特性參數 16 2.5 參考資料 18 第三章 共軛高分子太陽能電池的特性量測 19 3.1 共軛高分子的導電機制 19 3.2 材料介紹 19 3.3 主動層介紹 24 3.4 實驗流程 25 3.5 量測儀器 28 3.6 參考資料 30 第四章 陰極結構以及添加劑對PCDTBT元件特性的影響 32 4.1 PCDTBT:PCBM主動層膜厚對元件特性的影響 32 4.1.1 元件結構與參數 32 4.1.2 結果與討論 34 4.2 以鈣、氟化鋰以及BCP做為緩衝層對元件特性的影響 34 4.2.1 緩衝層厚度最佳化分析 34 4.2.2 元件結構與參數 35 4.2.3 結果與討論 37 4.3 添加劑的使用對元件特性與主動層表面形貌的影響 37 4.3.1 前退火製程的影響 37 4.3.2 添加劑濃度最佳化分析 38 4.3.3 結果與討論 39 4.4 結論 43 4.5 參考資料 43 第五章 氧化鎳電洞傳輸層對P3HT元件特性的影響 44 5.1 氧化鎳的導電機制與備置 44 5.1.1 導電機制 44 5.1.2 薄膜的備置 44 5.2 氧化鎳薄膜的後處理影響 45 5.2.1 氧化鎳薄膜的XPS與UPS量測 47 5.2.2 結果與討論 49 5.3 氧化鎳電洞傳輸層對P3HT元件特性的影響 50 5.3.1 元件結構與參數 50 5.3.2 結果與討論 51 5.4 元件穩定度的分析比較 55 5.5 結論 56 5.6 參考資料 56 第六章 PBDTTT-C-T元件特性分析 58 6.1 主動層的最佳化參數分析 58 6.1.1 元件結構與參數 58 6.1.2 結果與討論 61 6.2 氧化鎳電洞傳輸層對PBDTTT-C-T元件特性的影響 63 6.2.1 氧化鎳電洞傳輸層參數最佳化分析 63 6.2.2 結果與討論 64 6.3 元件穩定度的分析比較 69 6.4 結論 70 第七章 未來展望 72 7.1 未來展望 72 7.2 參考資料 73 | |
| dc.language.iso | zh-TW | |
| dc.title | 低能隙共軛高分子材料與氧化鎳電洞傳輸層於有機太陽能電池的特性分析 | zh_TW |
| dc.title | The investigation of low band-gap conjugated polymers and nickel oxide hole transport layers in organic solar cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林清富(Ching-Fuh Lin),陳奕君(I-Chun Cheng),陳美杏(Mei-Hsin Chen) | |
| dc.subject.keyword | 共軛高分子,有機太陽能電池,本體異質接面,氧化鎳,電洞傳輸層, | zh_TW |
| dc.subject.keyword | conjugated polymers,organic solar cells,bulk heterojunction,nickel oxide,hole transport layers, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
