Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17489
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊傑
dc.contributor.authorShin-Ping Kuanen
dc.contributor.author官欣平zh_TW
dc.date.accessioned2021-06-08T00:16:04Z-
dc.date.copyright2013-07-31
dc.date.issued2013
dc.date.submitted2013-07-29
dc.identifier.citation連國淵,2009: 颱風路徑與結構同化研究-系集卡爾曼濾波器。國立台灣大學大氣科學系,碩士論文。
鄭元銘,2011:邊界層動力過程對颱風強度之影響。國立台灣大學大氣科學系,碩士論文。
Abarca, S. F, and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, doi:10.1029/2011GL047015.
Bui, H. H., R. K. Smith, and M. T. Montgomery, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Meteorol. Soc. 135: 1715–1731.
Chen, Y., G. Brunet, M. K. Yau, 2003: Spiral Bands in a Simulated Hurricane. Part II: Wave Activity Diagnostics. J. Atmos. Sci., 60, 1239-1256.
Corbosiero, K. L., J. Molinari, and A. R. Aiyyer, 2006: The Structure and Evolution of Hurricane Elena (1985). Part II: Convective Asymmetries and Evidence for Vortex Rossby Waves. Mon. Wea. Rev., 134, 3073-3091.
──, S. Abarca and M. T. Montgomery, 2012: Vortex Rossby Waves and Secondary Eyewall Formation in a High-resolution Simulation of Hurricane Katrina (2005). Proc., 30th Conf. on Hurrcanes and Tropical Mereorology, Jacksonville, FL. Amer. Meteo. Soc. 1A.6.
Elsberry, R. L. and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pacific J. Atmos. Sci., 44, 3, 209-231.
Fang, J., and F. Zhang, 2012: Effect of Beta Shear on Simulated Tropical Cyclones. Mon. Weather. Rev., 138, 2092-2109. 140, 3327-2246.
Hawkins, H. F., 1983: Hurricane Allen and island obstacles, J. Atmos. Sci., 40, 1360–1361.
Hawkins, J. D., and M. Helveson, 2008: Tropical cyclone multiple eyewall characteristics. 28th conf. on Hurrcanes and Tropical Mereorology, Orlando, FL. Amer. Meteor. Soi., 14B.1.
Hill, K. A., and G. M. Lackmann, 2009: Influence of Environmental Humidity on Tropical Cyclone Size. Mon. Weather Rev., 137, 3294-3315.
Hogsett W., and D.-L. Zhang, 2009: Numerical Simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci., 66, 2678-2696.
Huang, Y.-H., C.-C. Wu, and G.-Y. Lien, 2010: Concentric eyewall formation in Typhoon Sinlaku (2008) - Part II: Dynamical analyses. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ. Amer. Meteor. Soc., 10B.3.
──, M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008) - Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662-674.
Judt, F., and S. S. Chen, 2010: Convectively Generated Potential Vorticity in Rainbands and Formation of the Secondary Eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 3581-3599.
Kepert, J. D. (2012): Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Weather. Rev., 140, 1427-1445.
Kossin, J. P., and M. Sitkowski, 2009: An Objective Model for Identifying Secondary Eyewall Formation in Hurricanes. Mon. Wea. Rev., 137, 876-892.
Kuo, H.-C., L.-Y. Lin, C.-P. Chang and R. T. Williams, 2004: The Formation of Concentric Vorticity Structures in Typhoons. J. Atmos. Sci., 61, 2722-2734.
──, W. H. Schubert, C.-L. Tsai and Y.-F. Kuo, 2008: Vortex Interactions and Barotropic Aspects of Concentric Eyewall Formation. Weather. Rev., 137, 5183-5198.
──, C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric Eyewalls. Mon. Weather Rev., 137, 3758-3770.
Martinez, Y., G. Brunet, M. K. Yau, and X. Xang, 2011: On the dynamics of concentric eyewall genesis: Space-time empirical normal modes diagnosis. J. Atmos. Sci., 68, 457-476.
Menelaou, K., P. M. K. Yau and Y. Martinez, 2012: On the dynamics of the secondary eyewall genesis in Hurricane Wilma (2005). Proc., 30th Conf. on Hurrcanes amd Tropical Mereorology, Jacksonville, FL. Amer. Meteo. Soc. 1A.1.
Montgomery, M. T., and J. Enagonio, 1998: Tropical Cyclogenesis via Convectively Forced Vortex Rossby Waves in a Three-Dimensional Quasigeostrophic Model. J. Atmos. Sci., 55, 3176–3207.
──, and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes, Q. J. R. Meteorol. Soc., 123, 435– 465.
Moon, Y. D. S. Nolan, and M. Iskandarani, 2010: On the use of two-dimensional incompressible flow to study secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 67, 3765–3773.
Nong, S., and K. A. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricane. Quart. J. Roy. Meteor. Soc., 129, 3323–3338.
Qiu, X., Z.-M Tan, and Xiao Q., 2010: The Roles of Vortex Rossby Waves in Hurricane Secondary Eyewall Formation. Mon. Weather. Rev., 138, 2092-2109.
──, and Z.-M. Tan, 2013: The Roles of Asymmetric Inflow Forcing Induced by Outer Rainbands in Tropical Cyclone Secondary Eyewall Formation. J. Atmos. Sci., 70, 953-974.
Ortt, D., and S. S. Chen, 2008: Effect of environmental moisture on rainbands in Hurricane Katrina and Rita (2005). 28th Conference on Hurricanes and Tropical Meteorology, Amer, Meteor. Soc. Orlando, FL, 5C.5.
Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325–340.
──, D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The Roles of an Expanding Wind Field and Inertial Stability in Tropical Cyclone Secondary Eyewall Formation. J. Atmos. Sci., 69, 2621-2643.
Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Q. J. R. Meteorol. Soc., 135: 1321–1335.
Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112.
Wang, X., Y. Ma, N. E. Davidson, 2013: Secondary Eyewall Formation and Eyewall Replacement Cycles in a Simulated Hurricane: Effect of the Net Radial Force in the Hurricane Boundary Layer. J. Atmos. Sci., 70, 1317–1341.
Wang, Y., 2008a: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 1158–1181.
──, 2008b: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65, 1505–1527.
──, 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273.
Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411.
Wu, C.-C., H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution of a landfalling typhoon. Mon. Wea. Rev., 137, 21–40.
──, Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506–527.
──, Y.-H. Huang, and S.-P. Kuan, 2013: Dynamics of secondary eyewall Formation – balanced and unbalanced responses. Davos Atmosphere and Cryosphere Assembly DACA - 13, Davos, Switzerland. July 8-12.
Xu, J., and Y. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 4135–4157.
Zhang, Q.-H., Y.-H. Kuo, and S.-J. Chen, 2005: Interaction between concentric eye-walls in super typhoon Winnie (1997). Quart. J. Roy. Meteor. Soc., 131, 3183–3204.
Zhou, Xiaqiong, and Bin Wang, 2011: Mechanism of Concentric Eyewall Replacement Cycles and Associated Intensity Change. J. Atmos. Sci., 68, 972-988.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17489-
dc.description.abstract衛星觀測研究顯示,發展至一定強度的熱帶氣旋除了內側眼牆外也常在生命期中經歷外眼牆的生成。自此觀點出發,外眼牆的生成動力與熱帶氣旋內部動力的連結成為研究關注的議題,其中邊界層內的非平衡動力機制為近年熱門的研究議題之一。本研究借由WRF-EnKF模式進行兩個部分的研究工作:1) 探討軸對稱風速剖面的資料同化量對辛樂克颱風(2008)雙眼牆模擬的影響,2) 重新檢視邊界層非平衡動力機制在高模式水平解析度(1.67 公里)模擬實驗中的角色。
  第一部分的研究,模式的水平解析度為5公里,風速剖面只在有飛機穿越觀測前後的2-3小時同化至模式中,此風剖資料同化量較少的實驗無法成功模擬辛樂克颱風中的雙眼牆結構,但能夠合理呈現內眼牆的增強過程,顯示在模式水平解析度不足的情況下,外眼牆相較於內眼牆對風剖資料同化的依賴程度更甚,颱風軸對稱風剖的最佳資料同化量值得後續研究加以釐清。
  第二部分的研究採用較高的水平解析度(1.67 公里)進行數值實驗,使用第一部分研究於9月10日03 UTC以及15 UTC產生的數值資料做為兩個模擬實驗(EXP1003-4D及EXP1015-4D)的初始場,初始時間較早的實驗無法成功產生雙眼牆結構,初始時間較晚的實驗則能夠模擬雙眼牆的生成與發展。和先前5公里解析度的實驗比較,這兩個提高解析度的數值實驗皆提供渦旋演變過程中更細部的結構特徵,渦漩的非軸對稱部分明顯、眼牆處的位渦出現多角形結構,顯示非軸對稱動力在高解析度模擬中可能扮演不可忽略的角色,其對雙眼牆形成的影響仍需要更進一步的研究。雙眼牆出現的個案呈現明顯的外眼牆結構,且超梯度風在外眼牆形成的半徑區間發展,並於外眼牆建立前發展出第二個顯著的極值。由提高解析度的EXP1015-4D實驗結果可知,當模式的水平解析度足夠時,即使颱風軸對稱風速剖面的資料同化量減少,此架構下的模式動力能夠提供外眼牆形成及發展的有利渦旋內部動力條件。
zh_TW
dc.description.abstractObservational studies based on satellite data have shown that mature tropical cyclones (TCs) often experience secondary eyewall formation (SEF) during their lifetime. This brings concerns for the essential role of intrinsic dynamics of a TC vortex in SEF. Among many proposed intrinsic dynamical mechanisms, of particular interest in this study is the role of unbalanced dynamics within and just above the boundary layer, a recently-presented dynamical pathway to SEF. A modified version of WRF-EnKF is used to answer two key questions about the SEF problem: 1) what is the impact of the amount of data assimilation that is involved in the operational parameter of the axisymmetric tangential wind profile on simulating SEF in Typhoon Sinlaku (2008), and 2) what is the role of unbalanced dynamics associated with boundary layer processes presented in numerical experiments with higher horizontal resolution (1.67 km).
In the first part of this study, wind profiles based on C-130 flight observations were assimilated into the model within a time window of 5-6 hours around the observing time. This experiment, with a reduced data amount of assimilated wind profiles, is unable to reproduce the secondary eyewall structure of Sinlaku, while intensification of the inner eyewall is reasonably captured. This result infers that the outer eyewall appears more sensitive to the reduced amount of assimilated wind profiles when coarser model resolution of 5 km is adopted. The optimal data assimilation amount of the TC wind profiles to be able to simulate SEF remains an interesting issue to be further investigated.
In the second part, numerical data carried out in the part one study are used to provide the initial condition for two data-denial experiments with higher model resolution (1.67 km). The two experiments are run from 03 UTC and 15 UTC 10 September, named EXP1003-4D and EXP1015-4D, respectively. Compared with the 5-km-resolution experiment, the two simulations present more details of the evolved TC vortex. The asymmetry of vortex is more distinct and active; for instance, the inner eyewall ring has a polygonal structure of potential vorticity, quite different from the 5-km simulation. This suggests that the asymmetric dynamics needs to be further addressed for the SEF problem, particularly in model simulations with high resolution.
The structure of the outer eyewall the high-resolution simulation (EXP1015-4D) is robust, and supergradient forces develop and establish a secondary maximum over the radii where SEF occurs, supporting the recently-proposed unbalanced pathway to SEF. The result of EXP1015-4D also implies that even though the amount of assimilated data is limited, given adequately fine model resolution, the model dynamics can capture the formation of the outer eyewall.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:16:04Z (GMT). No. of bitstreams: 1
ntu-102-R00229005-1.pdf: 6029353 bytes, checksum: 184fbbd1f21c77f5f56fa67aee12ce5c (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
表目錄 VII
圖目錄 VIII
第一章、 前言 1
1.1 颱風外眼牆形成研究文獻回顧 2
1.1.1外在條件影響 2
1.1.2內在動力因素 3
1.2平衡與非平衡動力在外眼牆生成中的角色 6
1.2.1 非平衡動力 7
1.2.2 平衡動力 9
1.3研究動機與目的 10
第二章、 研究工具與方法 11
2.1資料來源──2008 T-PARC實驗 11
2.2渦漩初始化設計──EnKF資料同化方法 11
2.3實驗設計 12
2.4 非平衡動力檢驗 13
第三章、 高解析度模擬結果分析 14
3.1三層槽狀網格模擬 14
3.2 高解析度資料模擬實驗 15
3.2.1 控制組實驗 15
3.2.2 EXP1003-4D 16
3.2.3 EXP1015-4D 19
3.3 EXP1003-4D與EXP1015-4D其餘軸對稱結構特徵 21
3.4 高解析度模擬對雙眼牆個案之影響 22
第四章、 總結與未來展望 23
參考文獻 26
附表 32
附圖 34
dc.language.isozh-TW
dc.title颱風雙眼牆形成動力研究──非平衡動力的延伸探討zh_TW
dc.titleDynamics of Secondary Eyewall Formation in Tropical Cyclones - Further Examination of the Unbalanced Responseen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊明仁,林依依
dc.subject.keyword颱風,辛樂克,雙眼牆,非平衡動力,模式解析度,資料同化,zh_TW
dc.subject.keywordTyphoon,Sinlaku,secondary eyewall formation,unbalanced dynamics,model resolution,data assimilation,en
dc.relation.page72
dc.rights.note未授權
dc.date.accepted2013-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved