Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17476
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管傑雄(Chieh-Hsiung Kuan)
dc.contributor.authorChien-Chuan Chienen
dc.contributor.author簡建川zh_TW
dc.date.accessioned2021-06-08T00:15:19Z-
dc.date.copyright2020-08-12
dc.date.issued2020
dc.date.submitted2020-08-05
dc.identifier.citation[1]. Vishakha Kaushik, Jaehong Lee, Juree Hong, Seulah Lee, Sanggeun Lee, Jungmok Seo,Chandreswar Mahata and Taeyoon Lee, Textile-Based Electronic Components for Energy Applications:Principles, Problems, and Perspective. 7 September 2015. p. 2.
[2]. Kayvon Fatahalian and Randal Bryant, Parallel Computer Architecture and Programming. 2016. Lecture 1: Why Parallelism: p. 33.
[3]. Stuart Peterson, Fabric Genomics: Moore’s Law The Coming TechBio Revolution. Jun 8, 2016.
[4]. 雷鋒網, 詳細解讀 7 奈米製程,看半導體巨頭如何拚老命為摩爾定律延壽。2018 年 06 月 25 日。
[5]. Ana I. S. Neves, FROM WEARABLES TO CONCRETE - APPLICATIONS OF GRAPHENE AND 2D MATERIALS. 12 Nov 2019.
[6]. 超越石墨烯!你必須要了解的二維納米材料製備、性質及應用!。2017-06-06。
[7]. Md Rubayat-E TanjilOrcID,Yunjo Jeong,Zhewen YinOrcID,Wyatt Panaccione andMichael Cai Wang OrcID, Ångström-Scale, Atomically Thin 2D Materials for Corrosion Mitigation and Passivation. 19 February 2019. p. 2.
[8]. An Emerging Class Of Graphene Based electronics. January 2017.
[9]. Teng Tan Xiantao Jiang Cong Wang Baicheng Yao Han Zhang, 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. 08 April 2020. p. 3.
[10]. JESUS DE LA FUENTE, Graphene - What Is It?.
[11]. Isabelle Dumé, Quantum dots give graphene photodetector a boost. 14 May 2012.
[12]. Nihit Saigal, Aspects of electronic structure of bulk and monolayer MoS2studied using optical spectroscopy. 25 April, 2016. p. 8.
[13]. Molybdenum Disulfide (MoS2):Theory Applications.
[14]. Hugh O. H. Churchill Pablo Jarillo-Herrero, Phosphorus joins the family. 07 May 2014. p. 5.
[15]. Tom Nakotte ,OrcID,Hongmei Luo , and Jeff Pietryga , PbE (E = S, Se) Colloidal Quantum Dot-Layered 2D Material Hybrid Photodetectors. 19 January 2020. p. 4.
[16]. Heng-Wei Hsu, Optical and electrical properties of back-gate single- layer molybdenum disulfide device by electron beam bombardment. January 2019. p. 14, p. 26-27, p. 32, p. 34, p. 36, p. 38.
[17]. Moxfyre, Molecular energy levels and Raman effect. 18 September 2009.
[18]. Muhammad Waqas Iqbal, Kinza Shahzad, Rehan Akbar, Ghulam Hussain, A review on Raman finger prints of doping and strain effect in TMDCs. January 2020. p. 2.
[19]. Oleg Gridenco, Why the electronic bends shifts when the MoS2 material is thinned from bulk down to a monolayer and get direct bandgap?.
[20]. Noah F.Q. Yuan, Benjamin T. Zhou, Wen-Yu Heand K. T. Law, IsingSuperconductivity in Transition Metal Dichalcogenides. 23 May 2016. p.1.
[21]. Nuggehalli M. RavindraEmail authorWeitao TangSushant Rassay, Transition Metal Dichalcogenides Properties and Applications. 18 January 2019.
[22]. Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlogl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. 14 October 2011. p. 2.
[23]. Kathleen M. McCreary,* Marc Currie, Aubrey T. Hanbicki, Hsun-Jen Chuang, and Berend T. Jonker, Understanding Variations in Circularly Polarized Photoluminescence in Monolayer Transition Metal Dichalcogenides. August 1, 2017. p. 1.
[24]. Yanqing Zhang, Guoliang Ma1, Xuesong Zheng, Zhengyong Hua, Jiaming Zhou, Heyi Li, Chaoming Liu, Yidan Wei, Tianqi Wang, Chunhua Qi, Shangli Dong, Mingxue Huo, Irradiation Effects of 1 MeV Electron on Monolayer MoS2 Field Effect Transistors. July 2019. p. 2.
[25]. Parkin WM1, Balan A, Liang L, Das PM1, Lamparski M, Naylor CH1, Rodríguez-Manzo JA, Johnson AT, Meunier V, Marija Drndić,, Raman Shifts in Electron-Irradiated Monolayer MoS2 . 25 Mar 2016. p. 4.
[26]. Kuang-Ju, Kao , Responsivity Enhanced Quantum Well Infrared Photodetector with Graphene/GaAs Heterojunction and Grating Structure. July 2019. p.11, p. 14, p. 24.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17476-
dc.description.abstract本研究目的在於利用電子束轟擊單層二硫化鉬光感測器以調變能帶結構以達到區分左旋光與右旋光。在單層二硫化鉬動量空間中的第一布里元區的K與K'這兩個位置的能帶因價電帶上的電子自旋方向不同導致一個價電帶分裂成兩個能量不同的價電帶不同的價電帶上分別有自旋方向相反的電子,而為了要滿足動量守恆,不同自旋方向的電子只能吸收某個圓偏振方向的光,因此利用不同方向的圓偏振光可激發不同位置的能帶,而K與K'的能帶為直接能隙可放光,我們利用左旋光或右旋光激發單層二硫化鉬光感測器去偵測左旋光與右旋光光致發光的強度以及量測其激發光光電流,利用某個方向的圓偏振光其光致發光強度占總共偵測到的光致發光強度的比例計算圓偏振度,同理,利用某個圓偏振光光電流占總電流的比例計算光電流偏振度,比例越高代表區分左旋與右旋光的能力越強。我們利用電子束轟擊對單層二硫化鉬產生硫原子的缺陷,當我們轟擊適當的電子束濃度,產生適當硫原子缺陷濃度,可達到最高的偏振度。zh_TW
dc.description.abstractThe purpose of this study is to use an electron beam to bombard a single-layer molybdenum disulfide photodetector to modulate the energy band structure to distinguish between left-handed and right-handed circularly polarized light. The energy bands at the two positions K and K' of the first Brillouin zone in the monolayer molybdenum disulfide reciprocal space are divided into two parts with different energy due to the different electron spin directions on the valence band. Different valence bands have electrons with opposite spin directions on the valence bands, and in order to meet the conservation of angular momentum, electrons with different spin directions can only absorb light in a certain circular polarization direction, so the use of circular polarization in different directions light can excite the energy bands in different positions, and the energy bands of K and K' are direct band gaps that can emit light. We use left- handed or right-handed circularly polarized light to excite a single-layer molybdenum disulfide photodetector to detect left-handed and right-handed circularly polarized light. We measure the intensity of the photoluminescence of circularly polarized light and its excitation photocurrent, using the ratio of the circularly polarized light in a certain direction to the total detected photoluminescence intensity to calculate the degree of circular polarization. Similarly, use the ratio of the photocurrent of a circularly polarized light to the total current to calculate the degree of photocurrent polarization. The higher the ratio of the photocurrent polarization degree, the stronger the ability to distinguish between left-handed and right-handed circularly polarized light. We use electron beam bombardment to generate sulfur vacancy defects on a monolayer molybdenum disulfide. When we bombard an appropriate electron beam concentration to produce an appropriate sulfur vacancy defect concentration, the highest degree of polarization can be achieved.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:15:19Z (GMT). No. of bitstreams: 1
U0001-0508202011013300.pdf: 4391494 bytes, checksum: 26ae3f12eb7bfe34d1f14cb3c6fcd2e4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 半導體元件尺寸極限 1
1.2 半導體元件之演進 2
1.3 二維材料的興起 3
1.4 常見二維材料種類 7
1.4.1 石墨烯(Graphene) 7
1.4.2 二硫化鉬(MoS2)……………………………………………………………..8
1.4.3 黑磷烯(Black Phosphrorene) 9
1.5 二維材料的比較 10
1.6 二硫化鉬材料應用……………………………………………………12
第二章 理論基礎 13
2.1 二硫化鉬拉曼量測 13
2.2 二硫化鉬光致發光 14
2.3 能谷偏振度(Valley Polarization) 15
2.4 響應度與偵測度(Responsivity Detectivity) 17
2.5 光電流偏振度(Degree of photocurrent polarization) 18
第三章 實驗儀器與元件製備 18
3.1 製程儀器簡介 18
3.1.1 微影技術與電子束微影系統(Electron Beam Lithography) 18
3.1.2 電子束蒸鍍機(Electron Beam Evaporator) 21
3.2 量測儀器簡介 22
3.2.1 打線機 22
3.2.2 微拉曼光譜量測系統(μ-Raman) 22
3.2.3 光致發光光譜與電性量測(Photoluminescence Electrical measurement) 23
3.2.4 掃描式電子顯微鏡(SEM) 24
3.3 元件結構 26
3.4 元件製備流程 27
3.4.1 二硫化鉬成長 27
3.4.2 晶片基板製作流程 27
3.4.3 二硫化鉬( MoS2 )轉移( Transfer )流程 28
3.4.4 定義汲極與源極電極的製作 29
第四章 實驗結果與分析 30
4.1 二硫化鉬材料光學性質分析 30
4.1.1 二硫化鉬拉曼訊號 30
4.1.2 二硫化鉬PL訊號 31
4.2 二硫化鉬光感測器分析……………………………………………....31
4.2.1 圓偏振度分析……………………………………………..........................................31
4.2.2 電性量測…………………………………………………………………….38
第五章 結論與未來展望 42
參考文獻 43
dc.language.isozh-TW
dc.title利用電子束轟擊二硫化鉬光感測器以提升激發光與光電流偏振選擇性zh_TW
dc.titleElectron-beam induced the enhancement of polarized emission and photocurrent in monolayer MoS2 photodetector
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee藍彥文(Yann-Wen Lan),孫允武(Yuen-Wuu Suen),孫建文(Kien-Wen Sun),蘇文生(Vin-Cent Su)
dc.subject.keyword電子束轟擊,單層二硫化鉬光感測器,左旋光,右旋光,光致發光,第一布里元區,圓偏振度,光電流偏振度,硫原子缺陷,zh_TW
dc.subject.keywordelectron beam bombardment,monolayer molybdenum disulfide photodetector,left-handed circularly polarized light,right-handed circularly polarized light,photoluminescence,first Brillouin zone,degree of circular polarization,degree of photocurrent polarization,sulfur vacancy defect,en
dc.relation.page44
dc.identifier.doi10.6342/NTU202002441
dc.rights.note未授權
dc.date.accepted2020-08-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0508202011013300.pdf
  未授權公開取用
4.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved