Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17469
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文彬
dc.contributor.authorGuo-Tang Hongen
dc.contributor.author洪國棠zh_TW
dc.date.accessioned2021-06-08T00:14:54Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-07-31
dc.identifier.citationAisagbonhi, O., M. Rai, et al. (2011). 'Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition.' Dis Model Mech 4(4): 469-483.
Beltrami, A. P., L. Barlucchi, et al. (2003). 'Adult cardiac stem cells are multipotent and support myocardial regeneration.' Cell 114(6): 763-776.
Bergmann, M. W. (2010). 'WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development.' Circ Res 107(10): 1198-1208.
Blankesteijn, W. M., Y. P. Essers-Janssen, et al. (1996). 'Increased expression of a homologue of drosophila tissue polarity gene 'frizzled' in left ventricular hypertrophy in the rat, as identified by subtractive hybridization.' J Mol Cell Cardiol 28(5): 1187-1191.
Caricasole, A., T. Ferraro, et al. (2003). 'Functional characterization of WNT7A signaling in PC12 cells: interaction with A FZD5 x LRP6 receptor complex and modulation by Dickkopf proteins.' J Biol Chem 278(39): 37024-37031.
Carthy, J. M., F. S. Garmaroudi, et al. (2011). 'Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner.' PLoS One 6(5): e19809.
Chen, W., D. ten Berge, et al. (2003). 'Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4.' Science 301(5638): 1391-1394.
Chimenti, I., E. Forte, et al. (2013). 'Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.' Biochim Biophys Acta 1830(2): 2459-2469.
Christoforou, N., R. A. Miller, et al. (2008). 'Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes.' J Clin Invest 118(3): 894-903.
Cingolani, O. H. (2007). 'Cardiac hypertrophy and the Wnt/Frizzled pathway.' Hypertension 49(3): 427-428.
Cohen, E. D., Y. Tian, et al. (2008). 'Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal.' Development 135(5): 789-798.
Dawson, K., M. Aflaki, et al. (2013). 'Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential.' J Physiol 591(Pt 6): 1409-1432.
Deardorff, M. A., C. Tan, et al. (1998). 'Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis.' Development 125(14): 2687-2700.
Deardorff, M. A., C. Tan, et al. (2001). 'A role for frizzled 3 in neural crest development.' Development 128(19): 3655-3663.
Gao, C. and Y. G. Chen (2010). 'Dishevelled: The hub of Wnt signaling.' Cell Signal 22(5): 717-727.
Gazit, A., A. Yaniv, et al. (1999). 'Human frizzled 1 interacts with transforming Wnts to transduce a TCF dependent transcriptional response.' Oncogene 18(44): 5959-5966.
Gessert, S. and M. Kuhl (2010). 'The multiple phases and faces of wnt signaling during cardiac differentiation and development.' Circ Res 107(2): 186-199.
Giles, R. H., J. H. van Es, et al. (2003). 'Caught up in a Wnt storm: Wnt signaling in cancer.' Biochim Biophys Acta 1653(1): 1-24.
Golan, T., A. Yaniv, et al. (2004). 'The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt. beta-catenin signaling cascade.' J Biol Chem 279(15): 14879-14888.
Goodell, M. A., K. Brose, et al. (1996). 'Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo.' Journal of Experimental Medicine 183(4): 1797-1806.
Hagenmueller, M., J. H. Riffel, et al. (2013). 'Dapper-1 Induces Myocardial Remodeling Through Activation of Canonical Wnt Signaling in Cardiomyocytes.' Hypertension.
Holmen, S. L., A. Salic, et al. (2002). 'A novel set of Wnt-Frizzled fusion proteins identifies receptor components that activate beta -catenin-dependent signaling.' J Biol Chem 277(38): 34727-34735.
Hsieh, J. C., A. Rattner, et al. (1999). 'Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein.' Proc Natl Acad Sci U S A 96(7): 3546-3551.
Karasawa, T., H. Yokokura, et al. (2002). 'Frizzled-9 is activated by Wnt-2 and functions in Wnt/beta -catenin signaling.' J Biol Chem 277(40): 37479-37486.
Kikuchi, A., H. Yamamoto, et al. (2011). 'New insights into the mechanism of Wnt signaling pathway activation.' Int Rev Cell Mol Biol 291: 21-71.
Kim, G. H., J. H. Her, et al. (2008). 'Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements.' J Cell Biol 182(6): 1073-1082.
Laeremans, H., S. S. Rensen, et al. (2010). 'Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts.' Cardiovasc Res 87(3): 514-523.
Laflamme, M. A. and C. E. Murry (2011). 'Heart regeneration.' Nature 473(7347): 326-335.
Laugwitz, K. L., A. Moretti, et al. (2005). 'Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages.' Nature 433(7026): 647-653.
Liu, T., X. Liu, et al. (1999). 'Activation of rat frizzled-1 promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via pathways that require Galpha(q) and Galpha(o) function.' J Biol Chem 274(47): 33539-33544.
Lyons, I., L. M. Parsons, et al. (1995). 'Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5.' Genes Dev 9(13): 1654-1666.
Lyons, J. P., U. W. Mueller, et al. (2004). 'Wnt-4 activates the canonical beta-catenin-mediated Wnt pathway and binds Frizzled-6 CRD: functional implications of Wnt/beta-catenin activity in kidney epithelial cells.' Exp Cell Res 298(2): 369-387.
Matsuura, K., T. Nagai, et al. (2004). 'Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes.' J Biol Chem 279(12): 11384-11391.
Medina, A., W. Reintsch, et al. (2000). 'Xenopus frizzled 7 can act in canonical and non-canonical Wnt signaling pathways: implications on early patterning and morphogenesis.' Mech Dev 92(2): 227-237.
Medina, A. and H. Steinbeisser (2000). 'Interaction of Frizzled 7 and Dishevelled in Xenopus.' Dev Dyn 218(4): 671-680.
Minami, I., K. Yamada, et al. (2012). 'A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions.' Cell Rep 2(5): 1448-1460.
Oerlemans, M. I., M. J. Goumans, et al. (2010). 'Active Wnt signaling in response to cardiac injury.' Basic Res Cardiol 105(5): 631-641.
Oh, H., S. B. Bradfute, et al. (2003). 'Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction.' Proc Natl Acad Sci U S A 100(21): 12313-12318.
Oikonomopoulos, A., K. I. Sereti, et al. (2011). 'Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3.' Circ Res 109(12): 1363-1374.
Olson, E. N. (2006). 'Gene regulatory networks in the evolution and development of the heart.' Science 313(5795): 1922-1927.
Pfister, O., F. Mouquet, et al. (2005). 'CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation.' Circ Res 97(1): 52-61.
Planutis, K., M. Planutiene, et al. (2007). 'Regulation of norrin receptor frizzled-4 by Wnt2 in colon-derived cells.' BMC Cell Biol 8: 12.
Qu, J., J. Zhou, et al. (2007). 'Cardiac-specific haploinsufficiency of beta-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction.' J Mol Cell Cardiol 43(3): 319-326.
Qyang, Y., S. Martin-Puig, et al. (2007). 'The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway.' Cell Stem Cell 1(2): 165-179.
Sanbe, A., J. Gulick, et al. (2003). 'Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter.' Circ Res 92(6): 609-616.
Sen, M., M. Chamorro, et al. (2001). 'Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation.' Arthritis Rheum 44(4): 772-781.
Sheldahl, L. C., M. Park, et al. (1999). 'Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner.' Curr Biol 9(13): 695-698.
Slusarski, D. C., V. G. Corces, et al. (1997). 'Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling.' Nature 390(6658): 410-413.
Tajbakhsh, S., U. Borello, et al. (1998). 'Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5.' Development 125(21): 4155-4162.
Terasaki, H., T. Saitoh, et al. (2002). 'Frizzled-10, up-regulated in primary colorectal cancer, is a positive regulator of the WNT - beta-catenin - TCF signaling pathway.' Int J Mol Med 9(2): 107-112.
Toyofuku, T., Z. Hong, et al. (2000). 'Wnt/frizzled-2 signaling induces aggregation and adhesion among cardiac myocytes by increased cadherin-beta-catenin complex.' J Cell Biol 150(1): 225-241.
Umbhauer, M., A. Djiane, et al. (2000). 'The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling.' EMBO J 19(18): 4944-4954.
Wu, S. M., Y. Fujiwara, et al. (2006). 'Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart.' Cell 127(6): 1137-1150.
Zhu, W., I. Shiojima, et al. (2008). 'IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis.' Nature 454(7202): 345-349.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17469-
dc.description.abstract簡介:Cardiac stem/progenitor cell被發現存在於在心臟之中,這些細胞具有自我修復之能力。Wnt signaling在胚胎的心臟發育及許多心臟疾病有著重要地位,這些疾病包括了心肌梗塞、心衰竭、以及心臟肥大。但Wnt對於心臟內各種細胞產生的各種不同作用,至今仍不清楚。目的:本篇論文將釐清Wnt3a在Nkx2.5+ cardiomyoblasts之self-renewal、心臟纖維母細胞的生長及transdifferentiation、心肌細胞的存活中,所扮演的腳色。
材料與方法:本篇論文利用具有Nkx2.5+ enhancer-GFP的基因轉殖鼠,使心臟中高度表現Nkx2.5之幹細胞表達GFP。利用酵素分解及flow cytometry將心室中的Nkx2.5-GFP+ cardiomyoblasts分離出來;也以酵素分解方式游離出纖維母細胞及成鼠心肌細胞。以CyQuant asssay或BrdU-pulse-labeling assay來了解Wnt對cell proliferation之影響,用免疫螢光染色來檢測細胞的分化情形,qPCR分析細胞轉錄特徵。
實驗結果:Wnt3a會產生劑量依存性地抑制Nkx2.5+ cardiomyoblast的生長,且這樣的效果可被一些Wnt抑制劑減少,如DKK1 (Wnt抑制劑),KY02111 (canonical Wnt抑制劑)、Y27632 (ROCK抑制劑)。而在心臟纖維母細胞中,Wnt3a可以抑制這些細胞進入cell cycle,但這樣的效應卻不能被KY02111所抵消。CHIR (a GSK3β inhibitor)會減少纖維母細胞中表現α-smooth muscle actin (α-SMA)的細胞,Wnt3a同樣可減少表現α-smooth muscle actin (α-SMA)的細胞量,且這效果能被KY02111所減少。此外,Wnt3a並不會影響體外培養成鼠心肌細胞的存活率。若將心肌細胞與Nkx2.5+ cardiomyoblast共同培養至五天,Nkx2.5+ cardiomyoblast可增加心肌細胞的存活,而Wnt3a會抑制Nkx2.5+ cardiomyoblast提供的支持心肌細胞存活效果。由qPCR檢驗Wnt receptor subtypes (Fzd)的轉錄表現量發現Fzd2及Fzd1(Wnt3a作用之receptor)在Nkx2.5+ cardiomyoblast及纖維母細胞中高度表現,且Fzd2在Nkx2.5+ cardiomyoblast中表現量遠高於纖維母細胞。
總結:Wnt3a可經由Wnt canonical (KY02111可抑制)及non-canonical pathway (Y27632可抑制)來減少Nkx2.5+ cardiomyoblast之生長。此情形與Wnt3a對纖維母細胞生長的抑制狀況不同,KY02111無法反轉Wnt3a的抑制作用。然而,Wnt3a抑制纖維母細胞轉型分化成myofibroblast的效應,卻可被KY02111抑制。另外,Wnt3a不會直接影響成鼠心肌細胞的存活或誘發細胞肥大。但在成鼠心肌細胞與Nkx2.5+ cardiomyoblast共同培養條件下,Wnt3a會抑制Nkx2.5+ cardiomyoblast產生的旁泌作用,減弱支持心肌細胞存活的效果。關於Wnt調控細胞生長、分化的詳細機制,以及如何影響Nkx2.5+ cardiomyoblast旁泌作用,仍需進一步研究探討。
zh_TW
dc.description.abstractIntroduction: Cardiac stem/progenitor cells were found resident in the heart and possess the potential for the self-repair. Wnt signaling plays a pivotal role in embryonic cardiogenesis and was found to be activated under diseases, including myocardial infarction, heart failure, and cardiac hypertrophy. It is still unclear in the different functioning of Wnts in cardiac cells. Aim: The present study aimed to clarify the different functional role of Wnt3a in regulating the self-renewal of Nkx2.5+ cardiomyoblasts, the growth and the transdifferentiation of cardiac fibroblast, and the survival of cardiomyocytes.
Material and Method: Nkx2.5-GFP+ cardiomyoblasts were isolated by enzymatic method from the ventricle of a reporter mice expressing GFP driven by an Nkx2.5-enhancer, and were sorted by flow cytometry. Enzyme digestion was also used to isolate fibroblasts and adult cardiomyocytes. CyQuant asssay or BrdU-pulse-labeling assay was performed to examine the effect of Wnts on cell proliferation. The differentiation pattern was evaluated by immunostaining and transcriptional profile by qPCR.
Results: Wnt3a, but not Wnt4, could dose-dependently inhibit the self-renewal of Nkx2.5+ cardiomyoblast, and the effect could be attenuated in the presence of Wnt inhibitors, including KY02111, DKK1, and a ROCK inhibitor (Y27632). In cardiac fibroblasts, Wnt3a could inhibit fibroblast entering cell cycle revealed by BrdU-pulse-labeling assay, which could not be blocked by KY02111. Furthermore, Wnt3a could decrease the cells expressing α-smooth muscle actin (α-SMA) and the effect could be attenuated by KY02111. CHIR (a GSK3β inhibitor) could also reduce α-SMA+ cells of cultured fibroblast. In cultured adult cardiomyocytes, Wnt3a did not alter myocyte survival in vitro. Co-culture of myocytes with Nkx2.5+ cardiomyoblast could enhance myocyte survival after culture for 5days, which could be attenuated by Wnt3a. The transcriptional profile of Wnt-receptor subtypes (Fzds) was analyzed by qPCR. High transcriptional levels of Fzd2 and Fzd1, the binding receptors of Wnt3a, were found in both Nkx2.5+ cardiomyoblast and cardiac fibroblast, and Nkx2.5+ cardiomyoblast expressed higher Fzd2 than fibroblast.
Conclusion: Wnt3a could inhibit the proliferation of Nkx2.5+ cardiomyoblast via both canonical Wnt-signaling (blocked by KY02111) and non-canonical pathway (blocked by Y27632). It was different from the inhibitory effect of Wnt3a in cardiac fibroblast proliferation that was insensitive to KY02111. KY02111 could reverse Wnt3a-induced reduction of myofibroblast transdifferentiation. Wnt3a did not alter adult cardiomyocyte survival or induce cell hypertrophy after in-vitro 3-day-culture, but attenuated the paracrine benefit of Nkx2.5+ cardiomyoblast to enhance myocyte survival after 5-day-culture under co-culture condition. It needs further study to clarify the detailed Wnt mechanisms corresponding to the regulation in cell proliferation, differentiation and the synthesis of paracrine factors in Nkx2.5+ cardiomyoblast.
Key words:cardiac progenitor cell, Nkx2.5, Wnt3a, Wnt signaling pathway, cardiac fibroblasts, cardiomyocytes
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:14:54Z (GMT). No. of bitstreams: 1
ntu-102-R00443018-1.pdf: 2186935 bytes, checksum: 0121fb38edfdf596e8ad7d7bad016f90 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsIndex
摘要 I
Abstract III
Introduction 1
Cardiac Progenitor Cells 1
Transcription factors during heart development 3
Nkx2.5+ Cardiac Progenitor Cells 4
Wnt signaling in the Heart 5
The Wnt signaling pathway 7
Wnt Ligand and Frizzled Receptor Subtype 9
Wnt Signaling Reactivation after Injury 11
Wnt3a effect on Cardiac Progenitor Cells 12
Motivation and Aim 12
Materials and Methods 14
Transgenic Mice 14
Nkx2.5+ cardiomyoblast Isolation and Culture 14
Cardiomyocyte Isolation and Culture 15
Cardiac Fibroblasts Isolation and Culture 16
CyQuant Cell Proliferation Assay 17
BrdU Pulse-Labeling Assay 17
Immunocytochemistry 18
Flow Cytometry 18
RNA extraction and qPCR 19
Pharmacological tools 19
Result 20
Result1: Wnt3a, but not Wnt 4, inhibited cell proliferation of Nkx2.5-GFP+ progenitor cells 20
Result2: BrdU pulse labeling assay of Nkx2.5-GFP+ cells in response to Wnt3a 21
Result3: Effect of Wnt3a and Wnt4 on the cell proliferation of cardiac fibroblasts 21
Result4. Wnt3a reduced BrdU-labeled cardiac fibroblasts 22
Result5. Effect of Wnt modulators on the transdifferentiation of cardiac fibroblast 22
Result6. Effect of Wnt3a on the survival of cardiomyocyte and cell size 23
Result7. Wnt3a attenuated the paracrine effect of Nkx2.5+ cardiomyoblast in supporting cardiomyocyte survival 24
Result8. Nkx2.5+ cardiomyoblast and cardiac fibroblast had higher transcriptional level of Fzd1 and Fzd2. 24
Discussion 26
References 33
Figures 37
dc.language.isoen
dc.titleWnt3a對心臟Nkx2.5+ cardiomyoblast、纖維母細胞、心肌細胞不同之調控效果zh_TW
dc.titleDifferent Modulatory Effect of Wnt3a in Nkx2.5+ Cardiomyoblast, Cardiac Fibroblast and Cardiomyocyteen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李安生,蘇銘嘉,顏茂雄
dc.subject.keywordcardiac progenitor cell,Nkx2.5,Wnt3a,Wnt signaling pathway,cardiac fibroblasts,cardiomyocytes,zh_TW
dc.relation.page50
dc.rights.note未授權
dc.date.accepted2013-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved