Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17467
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭
dc.contributor.authorMei-Yan Chenen
dc.contributor.author陳玫延zh_TW
dc.date.accessioned2021-06-08T00:14:48Z-
dc.date.copyright2013-08-07
dc.date.issued2013
dc.date.submitted2013-07-31
dc.identifier.citation1. Garnacho-Montero, J., et al., Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis, 2003. 36(9): p. 1111-8.
2. Dougherty, T.J., et al., Photodynamic therapy. J Natl Cancer Inst, 1998. 90(12): p. 889-905.
3. Raab, O., Uber die Wirkung fluoreszierender Stoffe auf Infusorien. Zeitung Biol., 1900. 39: p. 524-526.
4. Finsen, N.R., Phototherapy1901, London: Edward Arnold.
5. von Tappeiner, H.J., A., Therapeutische versuche mit fluoreszierenden stoffen. Muench Med. Wochenschr, 1903. 47: p. 2042-2044.
6. Hausmann, W., The sensitising effect of haematoporphyrine. Biochemische Zeitschrift, 1911. 30: p. 276-316.
7. Lipson, R.L. and E.J. Baldes, The Photodynamic Properties of a Particular Hematoporphyrin Derivative. Arch Dermatol, 1960. 82(4): p. 508-516.
8. Lipson, R.L., E.J. Baldes, and A.M. Olsen, The use of a derivative of hematoporhyrin in tumor detection. J Natl Cancer Inst, 1961. 26: p. 1-11.
9. Kelly, J.F. and M.E. Snell, Hematoporphyrin Derivative - Possible Aid in Diagnosis and Therapy of Carcinoma of Bladder. Journal of Urology, 1976. 115(2): p. 150-151.
10. Mccaughan, J.S., et al., Palliation of Esophageal Malignancy with Photoradiation Therapy. Cancer, 1984. 54(12): p. 2905-2910.
11. Balchum, O.J., D.R. Doiron, and G.C. Huth, Photoradiation Therapy of Endobronchial Lung Cancers Employing the Photodynamic-Action of Hematoporphyrin Derivative. Lasers Surg Med, 1984. 4(1): p. 13-30.
12. Hayata, Y., et al., Photodynamic therapy with hematoporphyrin derivative in cancer of the upper gastrointestinal tract. Semin Surg Oncol, 1985. 1(1): p. 1-11.
13. Ward, A.J. and E.K. Matthews, Cytotoxic, nuclear, and growth inhibitory effects of photodynamic drugs on pancreatic carcinoma cells. Cancer Lett, 1996. 102(1-2): p. 39-47.
14. Wainwright, M., Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother, 1998. 42(1): p. 13-28.
15. Bone, R.C., W.J. Sibbald, and C.L. Sprung, The ACCP-SCCM consensus conference on sepsis and organ failure. Chest, 1992. 101(6): p. 1481-3.
16. Baker, A. and J.R. Kanofsky, Quenching of singlet oxygen by biomolecules from L1210 leukemia cells. Photochem Photobiol, 1992. 55(4): p. 523-8.
17. Hsi, R.A., D.I. Rosenthal, and E. Glatstein, Photodynamic therapy in the treatment of cancer: current state of the art. Drugs, 1999. 57(5): p. 725-34.
18. Maisch, T., et al., Antibacterial photodynamic therapy in dermatology. Photochem Photobiol Sci, 2004. 3(10): p. 907-17.
19. Agostinis, P., et al., Photodynamic therapy of cancer: an update. CA Cancer J Clin, 2011. 61(4): p. 250-81.
20. Ackroyd, R., et al., The history of photodetection and photodynamic therapy. Photochem Photobiol, 2001. 74(5): p. 656-69.
21. Jang, W.D., et al., Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control Release, 2006. 113(1): p. 73-9.
22. Maisch, T., Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci, 2007. 22(2): p. 83-91.
23. Hancock, R.E.W., The bacterial outer membrane as a drug barrier. Trends in Microbiology, 1997. 5(1): p. 37-42.
24. Kabanov, A.V., E.V. Batrakova, and V.Y. Alakhov, Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of Controlled Release, 2002. 82(2-3): p. 189-212.
25. Kwon, G.S., Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst, 2003. 20(5): p. 357-403.
26. Tsai, T., et al., Improved Photodynamic Inactivation of Gram-Positive Bacteria Using Hematoporphyrin Encapsulated in Liposomes and Micelles. Lasers Surg Med, 2009. 41(4): p. 316-322.
27. 張博涵, 以白色念珠菌為模式探討甲殼素增強光動力殺菌的效果. 國立台灣大學,微生物與生化學研究所碩士論文, 2010.
28. Lowy, F.D., Staphylococcus aureus infections. N Engl J Med, 1998. 339(8): p. 520-32.
29. Orenstein, A., et al., The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections. Fems Immunology and Medical Microbiology, 1997. 19(4): p. 307-314.
30. Fergie, J.E., et al., Pseudomonas-Aeruginosa Bacteremia in Immunocompromised Children - Analysis of Factors Associated with a Poor Outcome. Clinical Infectious Diseases, 1994. 18(3): p. 390-394.
31. Tsai, T., et al., Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria. Antimicrob Agents Chemother, 2011. 55(5): p. 1883-90.
32. Sutton, J.M., et al., Porphyrin, chlorin, and bacteriochlorin isothiocyanates: useful reagents for the synthesis of photoactive bioconjugates. Bioconjug Chem, 2002. 13(2): p. 249-63.
33. Warshel, A. and W.W. Parson, Spectroscopic Properties of Photosynthetic Reaction Centers .1. Theory. J Am Chem Soc, 1987. 109(20): p. 6143-6152.
34. Yu, D.Y., F. Huang, and H. Xu, Determination of critical concentrations by synchronous fluorescence spectrometry. Analytical Methods, 2012. 4(1): p. 47-49.
35. Rao, V.G., et al., Ionic Liquid-Induced Changes in Properties of Aqueous Cetyltrimethylammonium Bromide: A Comparative Study of Two Protic Ionic Liquids with Different Anions. Journal of Physical Chemistry B, 2011. 115(14): p. 3828-3837.
36. Uzdensky, A.B., et al., Photodynamic effect of novel chlorin e6 derivatives on a single nerve cell. Life Sci, 2004. 74(17): p. 2185-97.
37. Tsay, J.M., et al., Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc, 2007. 129(21): p. 6865-6871.
38. Li, F. and K. Na, Self-assembled chlorin e6 conjugated chondroitin sulfate nanodrug for photodynamic therapy. Biomacromolecules, 2011. 12(5): p. 1724-30.
39. Jang, W.D., et al., Polyion complex micelles for photodynamic therapy: Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. Journal of Controlled Release, 2006. 113(1): p. 73-79.
40. Marufa Zerin Akhter, I.K., Priyanath Roy, Mir Mohammad Ibna Masud, Analysis of Antibiotics Susceptibility of Old and Fresh ATCC Strain of Staphylococcus aureus by Standard Agar Diffusion Technique. Bangladesh Journal of Microbiology, 2007. 24(2): p. 137-142.
41. Leive, L., Studies on the permeability change produced in coliform bacteria by ethylenediaminetetraacetate. J Biol Chem, 1968. 243(9): p. 2373-80.
42. Leive, L., V.K. Shovlin, and S.E. Mergenhagen, Physical, chemical, and immunological properties of lipopolysaccharide released from Escherichia coli by ethylenediaminetetraacetate. J Biol Chem, 1968. 243(24): p. 6384-91.
43. Cheng, J.K., et al., Susceptibility of whole cells and spheroplasts of Pseudomonas aeruginosa to actinomycin D. Antimicrob Agents Chemother, 1973. 3(3): p. 399-406.
44. Leive, L., Actinomycin Sensitivity in Escherichia Coli Produced by Edta. Biochem Biophys Res Commun, 1965. 18: p. 13-7.
45. Haywood, A.M. and R.L. Sinsheimer, Inhibition of protein synthesis in E. coli protoplasts by actinomycin-D. J Mol Biol, 1963. 6: p. 247-9.
46. MacAlister, T.J., J.W. Costerton, and K.J. Cheng, Effect of the removal of outer cell wall layers on the actinomycin susceptibility of a gram-negative bacterium. Antimicrob Agents Chemother, 1972. 1(5): p. 447-9.
47. Coratza, G. and A.M. Molina, Enhanced sensitivity to the photodynamic effect of 3,4-benzpyrene in ethylenediaminetetraacetate-treated Escherichia coli. J Bacteriol, 1978. 133(1): p. 411-2.
48. Ferro, S., et al., Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome. International Journal of Biochemistry & Cell Biology, 2007. 39(5): p. 1026-1034.
49. Merchat, M., et al., Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B, 1996. 32(3): p. 153-7.
50. Minnock, A., et al., Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J Photochem Photobiol B, 1996. 32(3): p. 159-64.
51. Suci, P.A., et al., Investigation of Ciprofloxacin Penetration into Pseudomonas-Aeruginosa Biofilms. Antimicrob Agents Chemother, 1994. 38(9): p. 2125-2133.
52. Duguid, I.G., et al., Effect of Biofilm Culture Upon the Susceptibility of Staphylococcus-Epidermidis to Tobramycin. Journal of Antimicrobial Chemotherapy, 1992. 30(6): p. 803-810.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17467-
dc.description.abstract日常環境周遭甚至人體身上存在的許多伺機性感染源易感染免疫力本身就低的住院病人,且對其威脅性高。這些病原菌的治療傳統上是使用抗生素,但近年來抗生素濫用導致的抗藥性問題日益嚴重。光動力治療(photodynamic therapy, PDT)應用於感染性疾病治療又稱為光動力殺菌(photodynamic inactivation, PDI),使用於PDI之光感物質中有許多屬於疏水性物質,其於水相溶液中的聚集現象會降低PDI效應。本研究以疏水性光感物質chlorin e6(Ce6)為對象,期望透過微胞(micelle)包埋的策略改善此一問題並增進對三株院內感染常見菌株之PDI效應。菌株分別為革蘭氏陽性菌之金黃色葡萄球菌(Staphylococcus aureus)、革蘭氏陰性菌之綠膿桿菌(Pseudomonas aeruginosa)、真菌之白色念珠菌(Candida albicans)。吸收和螢光光譜、粒徑、Ce6回收率等特性分析結果顯示,三種微胞材料Pluronic P123、Lutrol F127、Synperonic L121中P123最適於Ce6的包埋,此劑型確實能增進對S. aureus之光動力殺菌效果,但對P. aeruginosa和C. albicans仍效果不佳,micelle form Ce6之Reactive oxygen species(ROS)產率較高,但與S. aureus結合量較低,可知微胞的包埋能透過分散Ce6分子增進PDI效應。為增進另外二株菌之PDI效果,改良微胞配方為帶正電荷P123-CTAB micelle Ce6,此一劑型增進了對C. albicans而非P. aeruginosa的PDI效果,由C. albicans與Ce6分子結合量分析結果推測雖然攝入較多free form Ce6但其於菌體內仍為聚集狀態,導至PDI效應不佳。最後我們將帶正電荷micelle Ce6應用於S. aureus和C. albicans生物膜之PDI測試,推測由於extracellular matrix之保護使PDI效果仍不佳。zh_TW
dc.description.abstractOpportunistic pathogens will cause disease when the function of immune system is reduced. Due to the extensive use of antibiotics, drug-resistant microbia spread fast. Photodynamic inactivation (PDI) is a potential treatment for infectious disease. Most of the photosensitizers (PSs) are hydrophobic and easy to aggregate, which will reduce the PDI efficacy. To increase the PDI efficacy, we encapsulated chlorin e6 (Ce6) into micelle and explored the PDI efficacy of micellar Ce6 against Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Pseudomonas aeruginosa, and fungus Candida albicans, as well as the biofilm. The UV-Vis and fluorescence spectrophotometric spectra show that the three materials PF127, L121 and P123 can successfully encapsulate and disperse Ce6. Micellar Ce6 can improve PDI efficacy to S. aureus, but not to P. aeruginosa and C. albicans. Though P123 micelle Ce6 can produce more reactive oxygen species, their binding to S. aureus was less compared to free-form Ce6.
To improve the PDI efficacy against P. aeruginosa and C. albicans, cationic P123-CTAB micelle Ce6 was developed. No dark toxicity was found in P123-CTAB micelle Ce6 but cause significant killing against C. albicans after light irradiation. Compared to free-form Ce6, P123-CTAB micelle Ce6 induce higher PDI effect, though C. albicans uptake higher content of free-form Ce6. The lower PDI efficacy might relate to the aggregation of free Ce6. Finally, we found that P123-CTAB micelle Ce6 can not improve PDI efficacy against the biofilms of S. aureus and C. albicans, which might relate to the protection of extracellular polymeric substances (EPS).
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:14:48Z (GMT). No. of bitstreams: 1
ntu-102-R00b22031-1.pdf: 1319485 bytes, checksum: dfe4743904e736a866df403db837eae0 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstract II
圖目錄 V
表目錄 VI
第一章、 緒論 1
1. 微生物與人類 1
1.1人體正常菌叢(Normal flora) 1
1.2伺機性感染(Opportunistic infection) 2
1.3院內感染 2
2.光動力治療(Photodynamic therapy, PDT) 3
2.1發展起源 3
2.2作用機制 4
2.3本研究使用之光感物質chlorin e6(Ce6) 6
2.4光動力殺菌(Photodynamic inactivation, PDI) 6
3.高分子微胞(Polymeric micelle) 7
4.本研究使用菌種介紹 9
4.1金黃色葡萄球菌(Staphylococcus aureus) 9
4.2綠膿桿菌(Pseudomonas aeruginosa) 9
4.3白色念珠菌(Candida albicans) 10
5.實驗動機與目的 11
第二章、材料與方法 12
1.藥品 12
2.儀器 13
3.菌種來源與保存 14
3.1菌種來源 14
3.2菌種保存與活化 14
4.實驗方法 15
4.1微胞製備 15
4.2 Ce6定量及回收率分析 15
4.3 Micelle光譜性質分析 16
4.4 Micelle粒徑分析 16
4.5懸浮菌體培養 16
4.6懸浮菌體之光動力殺菌 16
4.7菌體與光感物質結合量分析 17
4.8生物膜之光動力殺菌 17
第三章、結果 18
1.光感物質特性分析 18
1.1 chlorin e6於不同溶劑中之光譜性質 18
2. 微胞包埋Ce6之性質分析 19
2.1光譜性質分析 19
2.2回收率與粒徑分析 19
3. Micellar Ce6應用於懸浮菌體之光動力殺菌 20
3.1金黃色葡萄球菌 20
3.2綠膿桿菌 20
3.3白色念珠菌 20
4.帶正電微胞包埋Ce6之性質分析 21
4.1光譜性質分析 21
4.2回收率、粒徑、帶電量分析 22
5.帶正電Micellar Ce6應用於光動力殺菌 22
5.1懸浮菌體 22
5.1.1綠膿桿菌 22
5.1.2白色念珠菌 23
5.1.3金黃色葡萄球菌 24
6.Micelle form Ce6增進光動力效應的可能作用機制 24
6.1Micellar Ce6之ROS產率分析 24
6.2菌體與光感物質Ce6結合量分析 25
7.Micelle form Ce6應用於生物膜之光動力殺菌 26
7.1金黃色葡萄球菌 26
7.2白色念珠菌 26
第四章、討論 27
1. 微胞包埋Ce6之基本性質 27
2. 中性微胞與帶正電微胞 30
3. 微胞包埋Ce6應用於光動力殺菌之成效 31
圖表 35
附錄 60
dc.language.isozh-TW
dc.title以微胞包埋chlorin e6之光動力殺菌研究zh_TW
dc.titlePhotodynamic inactivation against bacteria and fungi by micellar chlorin e6en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃慶燦,蔡翠敏,許瑞祥
dc.subject.keyword光動力殺菌,chlorin e6,微胞,Pluronic P123,金黃色葡萄球菌,綠膿桿菌,白色念珠菌,zh_TW
dc.subject.keywordPhotodynamic inactivation,chlorin e6,micelle,Pluronic P123,Staphylococcus aureus,Pseudomonas aeruginosa,Candida albicans,en
dc.relation.page65
dc.rights.note未授權
dc.date.accepted2013-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved