Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17449
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林彥蓉
dc.contributor.authorMeng-Ying Linen
dc.contributor.author林孟穎zh_TW
dc.date.accessioned2021-06-08T00:13:46Z-
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-02
dc.identifier.citation朱昌蘭, 沈文飆, 翟虎渠, 萬建民 (2004) 水稻低直鏈澱粉含量基因育種利用的研究進展。中國農業科學 37: 157-162
吳永培, 盧虎生 (2002) 水稻誘變育種。中華農藝 12: 219-239
宋勳, 洪梅珠, 許愛娜 (1991) 台灣稻米品質之研究。台中區農業改良場特刊 24: 5-9
李雅婷 (2012) 溫度逆境對不同穗位的乙烯合成及水稻穎果發育之影響。臺灣大學農藝學研究所學位論文
林鋐穎 (2009) 邁向水稻半糯基因 Du8 之定位選殖。臺灣大學農藝學研究所學位論文
陳文志 (1988) 不同碾磨技術對米化粉理化特性之研究及新產品之開發。中興大學食品科技研究所學位論文
曾盟群 (2012) 影響稻米味度及黏度特性之數量性狀基因座定位分析。臺灣大學農藝學研究所學位論文
黃歆雅 (2013) 新穎的水稻粉質狀基因 FLO7 之澱粉粒觀察、互補試驗及次細胞定位。臺灣大學農藝學研究所學位論文
廖英男, 劉景平, 林彥蓉, 吳永培 (2012) 水稻粉狀質基因 FLO6 之遺傳分析與初定位。嘉大農林學報 9: 1-19
蒲玠涵 (2011) 水稻半糯基因 Du8 定位選殖與基因表現之分析。臺灣大學農藝學研究所學位論文
劉瑋庭, 宋勳 (1996) 稻米品質的影響因素與分級。稻作生產改進策略研討會專刊臺灣省農業試驗所專刊: 133-153
蔡嘉倪 (2013) 探討水稻幼苗脂肪酸與低溫耐受性之相關性。臺灣大學農藝學研究所學位論文
盧虎生 (2004) 水稻之發育過程與健康管理。水稻健康管理研討會專集行政院農委會農業試驗所特刊 111: 17-32

Bao J, Zheng X, Xia Y, He P, Shu Q, Lu X, Chen Y, Zhu L (2000) QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theor Appl Genet. 100: 280-284
Bjorck I, Asp N (1994) Controlling the nutritional properties of starch in foods—A challenge to the food industry. Trends Food Sci Technol. 5: 213-218
Buleon A, Gallant DJ, Bouchet B, Mouille G, D'Hulst C, Kossmann J, Ball S (1997) Starches from A to C (Chlamydomonas reinhardtii as a model microbial system to investigate the biosynthesis of the plant amylopectin crystal). Plant Physiol. 115: 949-957
Chang TT (1976) The origin, evolution, cultivation, dissemination, and diversification of asian and african rices. Euphytica 25: 425-441
Choudhury NH, Juliano BO (1980) Effect of amylose content on the lipids of mature rice grain. Phytochemistry 19: 1385-1389
Denyer K, Johnson P, Zeeman S, Smith AM (2001) The control of amylose synthesis. J Plant Physiol. 158: 479-487
Dey PM (1990) Methods in Plant Biochemistry. II. Carbohydrates. Academic Press Limited, London
Ekman A, Hayden DM, Dehesh K, Bulow L, Stymne S (2008) Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds. J Exp Bot. 59: 4247-4257
Eliasson A, Gudmundsson M (1996) Starch: physicochemical and functional aspects. In A Eliasson, ed, Carbohydrates in Food. Marcel Dekker, New York, pp 431-503
Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci. 14: 133-139
Fujita N, Kubo A, Suh D-S, Wong K-S, Jane J-L, Ozawa K, Takaiwa F, Inaba Y, Nakamura Y (2003) Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physiol. 44: 607-618
Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol. 140: 1070-1084
Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J-H, Jane J-L (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol. 144: 2009-2023
Gao Z, Zeng D, Cui X, Zhou Y, Yan M, Huang D, Li J, Qian Q (2003) Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci China C Life Sci. 46: 661-668
Guraya HS, Kadan RS, Champagne ET (1997) Effect of rice starch-lipid complexes on in vitro digestibility, complexing index, and viscosity. Cereal Chem. 74: 561-565
Han X, Wang Y, Liu X, Jiang L, Ren Y, Liu F, Peng C, Li J, Jin X, Wu F (2012) The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. J Exp Bot. 63: 121-130
Hanashiro I, Itoh K, Kuratomi Y, Yamazaki M, Igarashi T, Matsugasako J-i, Takeda Y (2008) Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol. 49: 925-933
Hanashiro I, Tagawa M, Shibahara S, Iwata K, Takeda Y (2002) Examination of molar-based distribution of A, B and C chains of amylopectin by fluorescent labeling with 2-aminopyridine. Carbohydr Res. 337: 1211-1215
He P, Li S, Qian Q, Ma Y, Li J, Wang W, Chen Y, Zhu L (1999) Genetic analysis of rice grain quality. Theor Appl Genet. 98: 502-508
Ho CT, Izzo MT (1992) Lipid-protein and lipid-carbohydrate interactions during extrusion. In Food Extrusion Science and Technology, Marcell Dekker, New York, pp 427-436
Isshiki M, Matsuda Y, Takasaki A, Wong HL, Satoh H, Shimamoto K (2008) Du3, a mRNA cap-binding protein gene, regulates amylose content in Japonica rice seeds. Plant Biotechnol J. 25: 483-487
Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun. 345: 646-651
Jasinski M, Ducos E, Martinoia E, Boutry M (2003) The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol. 131: 1169-1177
Juliano B (1983) Lipids in rice and rice processing. In Academic. Press, New York, pp 305-330
Juliano B, Perez C, Blakeney A, Castillo T, Kongseree N, Laignelet B, Lapis E, Murty V, Paule C, Webb B (1981) International cooperative testing on the amylose content of milled rice. Starch‐Starke 33: 157-162
Juliano BO (1996) Rice quality screening with the Rapid Visco Analyser. In HJ Walker CE, ed, Applications of the Rapid Visco Analyser. Newport Scientific, Sydney
Kang HG, Park S, Matsuoka M, An G (2005) White‐core endosperm floury endosperm‐4 in rice is generated by knockout mutations in the C4‐type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42: 901-911
Kaur K, Singh N (2000) Amylose-lipid complex formation during cooking of rice flour. Food Chem. 71: 511-517
Kaw R, Cruz N (1990) Interrelations among physicochemical grain quality characters in rice. J Genet Breed. 44: 139-141
Keeling PL, Myers AM (2010) Biochemistry and genetics of starch synthesis. Annu Rev Food Sci Technol. 1: 271-303
Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol. 59: 1-6
Kitahara K, Suganuma T, Nagahama T (1996) Susceptibility of amylose-lipid complexes to hydrolysis by glucoamylase. Cereal Chem. 73: 428-432
Krishnan A, Guiderdoni E, An G, Yue-ie CH, Han C-D, Lee M-C, Yu S-M, Upadhyaya N, Ramachandran S, Zhang Q (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol. 149: 165-170
Krishnan H, Franceschi V, Okita T (1986) Immunochemical studies on the role of the Golgi complex in protein-body formation in rice seeds. Planta. 169: 471-480
Krishnan S, Dayanandan P (2003) Structural and histochemical studies on grain-filling in the caryopsis of rice (Oryza sativa L.). J Biosci. 28: 455-469
Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y (1999) The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol. 121: 399-410
Kullenberg D, Taylor LA, Schneider M, Massing U (2012) Health effects of dietary phospholipids. Lipids Health Dis. 11: 3
Kumamaru T, Sato H, Satoh H (1997) High‐lysine mutants of rice, Oryza sativa L. Plant Breeding 116: 245-249
Kumar I, Khush G (1986) Genetics of amylose content in rice (Oryza sativa L). J Genet. 65: 1-11
Lee S-K, Hwang S-K, Han M, Eom J-S, Kang H-G, Han Y, Choi S-B, Cho M-H, Bhoo SH, An G (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol. 65: 531-546
Li H, Chen Z, Hu M, Wang Z, Hua H, Yin C, Zeng H (2011) Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Rep. 30: 1641-1659
Lin C-J, Li C-Y, Lin S-K, Yang F-H, Huang J-J, Liu Y-H, Lur H-S (2010) Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem. 58: 10545-10552
Linares OF (2002) African rice (Oryza glaberrima): history and future potential. Proc Natl Acad Sci U S A. 99: 16360-16365
Liu L, Waters DL, Rose TJ, Bao J, King GJ (2013) Phospholipids in rice: Significance in grain quality and health benefits: A review. Food Chem. 139: 1133-1145
Liu QM, Jiang JH, Niu FA, He YJ, Hong DL (2013) QTL analysis for seven quality traits of RIL population in Japonica rice based on three genetic statistical models. Rice Sci. 20: 31-38
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) Method. Methods. 25: 402-408
Martin C, Smith AM (1995) Starch biosynthesis. Plant Cell. 7: 971
Matsuo T, Hoshikawa K (1993) Science of the rice plant. II. Physiology. In Food and Agriculture Policy Research Center, Tokyo, pp 98-111
Morell M, Rahman S, Abrahams S, Appels R (1995) The biochemistry and molecular biology of starch synthesis in cereals. Funct Plant Biol. 22: 647-660
Myers AM, James MG, Lin Q, Yi G, Stinard PS, Hennen-Bierwagen TA, Becraft PW (2011) Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. Plant Cell. 23: 2331-2347
Nagasaki H, Arita M, Nishizawa T, Suwa M, Gotoh O (2006) Automated classification of alternative splicing and transcriptional initiation and construction of visual database of classified patterns. Bioinformatics. 22: 1211-1216
Nakamura Y (1996) Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci. 121: 1-18
Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue. Plant Cell Physiol. 43: 718-725
Nakamura Y, Francisco PB, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol. 58: 213-227
Nelson O, Pan D (1995) Starch synthesis in maize endosperms. Annu Rev Plant Biol. 46: 475-496
Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of Amylose-Extender mutation in rice endosperm. Plant Physiol. 127: 459-472
Nishio T, Iida S (1993) Mutants having a low content of 16-kDa allergenic protein in rice (Oryza sativa L.). Theor Appl Genet. 86: 317-321
Ohdan T, Francisco PB, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot. 56: 3229-3244
Pandey MK, Rani NS, Madhav MS, Sundaram R, Varaprasad G, Sivaranjini A, Bohra A, Kumar GR, Kumar A (2012) Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnol Adv. 30: 1697-1706
Preiss J (2009) Biochemistry and Molecular Biology of Starch Biosynthesis. In B James, W Roy, eds, Starch (Third Edition). Academic Press, San Diego, pp 83-148
Qiao Y, Lee S-I, Piao R, Jiang W, Ham T-H, Chin J-H, Piao Z, Han L, Kang S-Y, Koh H-J (2010) Fine mapping and candidate gene analysis of the floury endosperm gene, FLO (a), in rice. Mol Cells 29: 167-174
Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol. 58: 347-375
Rea PA, Li Z-S, Lu Y-P, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Biol. 49: 727-760
Ryoo N, Yu C, Park C-S, Baik M-Y, Park IM, Cho M-H, Bhoo SH, An G, Hahn T-R, Jeon J-S (2007) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep. 26: 1083-1095
Satoh H, Nishi A, Fujita N, Kubo A, Nakamura Y, Kawasaki T, Okita TW (2003a) Isolation and characterization of starch mutants in rice. J of Appl Glycosci. 50: 225-230
Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y (2003b) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol. 133: 1111-1121
Satoh H, Omura T (1981) New endosperm mutations induced by chemical mutagens in rice Oryza sativa L. Jpn J Breed. 31: 312-316
She K-C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M (2010) A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell. 22: 3280-3294
Singh R, Juliano BO (1977) Free sugars in relation to starch accumulation in developing rice grain. Plant Physiol. 59: 417-421
Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 9: 465-476
Takahashi H, Saito Y, Kitagawa T, Morita S, Masumura T, Tanaka K (2005) A novel vesicle derived directly from endoplasmic reticulum is involved in the transport of vacuolar storage proteins in rice endosperm. Plant Cell Physiol. 46: 245-249
Takeda Y, Hizukuri S, Juliano BO (1987) Structures of rice amylopectins with low and high affinities for iodine. Carbohydr Res. 168: 79-88
Tanaka N, Fujita N, Nishi A, Satoh H, Hosaka Y, Ugaki M, Kawasaki S, Nakamura Y (2004) The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. Plant Biotechnol J. 2: 507-516
Tashiro T, Wardlaw I (1991) The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Crop Pasture Sci. 42: 485-496
Tetlow IJ (2011) Starch biosynthesis in developing seeds. Seed Sci Res. 21: 5-32
Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot. 55: 2131-2145
Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D (2009) Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci U S A. 106: 21760-21765
Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y (2002) Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet. 104: 1-8
Utsumi Y, Utsumi C, Sawada T, Fujita N, Nakamura Y (2011) Functional diversity of isoamylase oligomers: the ISA1 homo-oligomer is essential for amylopectin biosynthesis in rice endosperm. Plant Physiol. 156: 61-77
Vandeputte G, Delcour J (2004) From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydr Polym. 58: 245-266
Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E (2008) Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci. 13: 151-159
Wang B-B, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci U S A. 103: 7175-7180
Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet. 40: 1370-1374
Wang L, Liu W, Xu Y, He Y, Luo L, Xing Y, Xu C, Zhang Q (2007) Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor Appl Genet. 115: 463-476
Wang Y, Ren Y, Liu X, Jiang L, Chen L, Han X, Jin M, Liu S, Liu F, Lv J (2010) OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J. 64: 812-824
Wang Y, Zhu S, Liu S, Jiang L, Chen L, Ren Y, Han X, Liu F, Ji S, Liu X (2009) The vacuolar processing enzyme OsVPE1 is required for efficient glutelin processing in rice. Plant J. 58: 606-617
Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, Li MG, Zhang JL, Hong MM (1995) The amylose content in rice endosperm is related to the post‐transcriptional regulation of the waxy gene. Plant J. 7: 613-622
Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci. 28: 182-188
Xu C, Fan J, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J. 22: 2370-2379
Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol. 144: 258-277
Yan CJ, Tian ZX, Fang YW, Yang YC, Li J, Zeng SY, Gu SL, Xu CW, Tang SZ, Gu MH (2011) Genetic analysis of starch paste viscosity parameters in glutinous rice (Oryza sativa L.). Theor Appl Genet. 122: 63-76
Yin LL, Xue HW (2012) The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell. 24: 1049-1065
Yoshida S, Hara T (1977) Effects of air temperature and light on grain filling of an indica and a japonica rice (Oryza sativa L.) under controlled environmental conditions. Soil Sci Plant Nutr. 23: 93-107
Zeng D, Yan M, Wang Y, Liu X, Qian Q, Li J (2007) Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.). Plant Mol Biol. 65: 501-509
Zhang D, Wu J, Zhang Y, Shi C (2012) Phenotypic and candidate gene analysis of a new floury endosperm mutant (osagpl2-3) in Rice. Plant Mol Biol. 30: 1303-1312
Zhang G, Cheng Z, Zhang X, Guo X, Su N, Jiang L, Mao L, Wan J, Gulick P (2011) Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch. Genome 54: 448-459
Zhou SR, Yin LL, Xue HW (2013) Functional genomics based understanding of rice endosperm development. Curr Opin Plant Biol. 16: 236-246
Zhou Z, Blanchard C, Helliwell S, Robards K (2003) Fatty acid composition of three rice varieties following storage. J Cereal Sci. 37: 327-335
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17449-
dc.description.abstract水稻穀粒呈不透明的突變體,包含粉質、糯性及半糯胚乳,為食品和工業利用上之重要性狀,不僅可作為研究充實期養分儲藏代謝過程的遺傳材料,也能促進了解澱粉生合成相關基因的調控網絡。本研究所使用的粉質胚乳材料為臺稉 8 號經 EMS 誘變且經多代自交固定而得之突變品系 WY14,其直鏈澱粉含量 (14.20 ± 0.05 %) 顯著低於臺稉 8 號 (18.15 ± 0.58 %),第一期作穀粒充實較慢,最終累積乾重較輕,但在第二期作則無顯著差異。WY14 與臺稉 8 號之蛋白質種類及含量無顯著差異,而胚乳內脂肪酸含量和組成不同,WY14 總脂肪酸含量 (0.38 ± 0.03 %) 顯著高於臺稉 8 號 (0.09 ± 0.01 %),棕櫚酸及花生酸比例顯著較高,且額外偵測到 0.16 % 長鏈飽和脂肪酸山萮酸。粉質突變基因經定位選殖的結果為 FLO7 的第一個外顯子有一核苷酸序列突變造成非同義置換,經基因及功能比對顯示 FLO7 為新穎的粉質基因,預測為 ABC 轉運蛋白,推測在水稻穀粒充實期澱粉生合成路徑中扮演運送物質的角色。以 RNA 干擾擾技術弱化 FLO7 之基因表現,22 個 RNAi 系之 T1 種子中,11 個轉殖系的榖粒透明與粉質分離,再度證明 FLO7 可造成水稻粉質胚乳。利用 3’ RACE 進行四種預測 FLO7 轉錄物之確認,FLO7 在胚乳內主要轉錄物為 FLO7-2a。以即時定量 PCR 反應進行 FLO7 及其他澱粉生合成相關基因於 101 年第一及第二期作水稻三葉齡組織或未成熟穎果的基因表現分析,FLO7 於三葉齡組織及未成熟穎果皆有表現,無明顯組織專一性,WY14 及臺稉 8 號於授粉後第 15 天表現量差異最大。以 WY14 相較臺稉 8 號之基因表現結果觀察,與澱粉生合成相關之上游路徑中,在細胞質作用的基因表現量大致呈現上升趨勢,如 UGP、OsAGPL2 及 OsAPGS2b 等;而下游路徑中,在澱粉體作用的基因表現量則下降,如OsGBSSI、OsSSIIIa 及 OsBEI 等。WY14 之 PPDKA 及 cyPPDKB 表現顯著高於臺稉 8 號,可能為脂肪酸含量較高之原因。推測 FLO7 可能參與在澱粉生合成之相關路徑中,影響特定物質轉運至澱粉體並導致澱粉排列改變。本研究結果對水稻胚乳內澱粉生合成相關基因調控機制及遺傳網絡的研究有所貢獻,日後亦可利用分子標幟輔助選種之方式將粉質胚乳性狀導入現行品種,增加稻米的多元應用。zh_TW
dc.description.abstractOpaque rice endosperm including floury, glutinous, and dull grains is important for food and industrial applications. The corresponding mutants not only provide valuable genetic materials for elucidating metabolic processes related to nutrient storage during grain filling but also facilitate the understanding the gene network of starch synthesis related genes. A floury mutant, WY14, is one of the mutants from TK8 induced by EMS which possessed lower amylose content (14.20 ± 0.05%) compared to that of wild type TK8 (18.15 ± 0.58 %). WY14 proceeded worse grain filling and accumulated lower dry weight of grains in the first crop season of 2012 than TK8 did, but not in the second crop season of 2012. Profiles of total storage proteins in WY14 and TK8 revealed no difference. However, WY14 had higher amount of fatty acid and proportion of palmitic acid and arachidic acid than TK8, and WY14 possessed additional 0.16 % of long-chain saturated fatty acid, behenic acid. The mutated gene, conferring floury endosperm of WY14, was isolated by positional cloning, which was named FLO7 and annotated as ABC transporter.
The mutation of FLO7 responsible for floury endosperm was confirmed by RNAi. T1 seeds of RNAi lines showed segregation of both translucent and floury endosperm. Identification of 4 FLO7 transcripts by 3’ RACE suggested that the main FLO7 transcript in endosperm is FLO7-2a. FLO7 expressed not only in vegetative tissues but also in immature caryopsis, and FLO7 expressed differently with significance between WY14 and TK8 at 15 DAP. Gene expression of most starch biosynthesis related enzymes acting in cytosol had higher level, but not those in amyloplast which were down-regulated in WY14 as compared to in TK8.
Futhermore, higher expression of PPDKA and cyPPDKB may account for higher total amount of fatty acid in WY14 than in TK8. This research contributes to the relevant regulatory mechanism and genetic network related to starch synthesis in rice endosperm. The flo7 of WY14 may be applied to breed new floury varieties by marker assisted selection for multipurpose usage of rice grains.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:13:46Z (GMT). No. of bitstreams: 1
ntu-102-R00621111-1.pdf: 3363384 bytes, checksum: c117ede2d251d729d17d61b67641a7ca (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
致謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VII
縮寫表 VIII
壹、前言 1
貳、前人研究 4
一、水稻胚乳發育 4
二、水稻胚乳內蛋白質與脂質 5
三、水稻澱粉結構及其生合成 7
四、食味品質相關基因及 QTLs 10
五、水稻胚乳突變體 12
六、ABC 運輸蛋白 (ATP-binding cassette transporter) 14
七、FLO7 基因表現預測 15
參、材料和方法 17
一、試驗材料 17
二、穀粒成分分析 19
(一) 穀粒充實過程之穎果乾重 19
(二) 直鏈澱粉之測定 19
(三) 穎果蛋白質萃取 20
(四) 胚乳脂肪酸萃取 21
三、FLO7 缺失造成粉質胚乳之確認 22
(一) 大腸桿菌轉型及 FLO7 之 RNAi 構築 24
(二) 農桿菌轉型 (Agrobacterium-mediated transformation) 26
(三) 農桿菌轉殖 26
四、FLO7 和其他澱粉生合成相關基因之轉錄分析 27
(一) Total-RNA 用於 3’ RACE (rapid amplification of cDNA ends) 以確認 FLO7 在穀粒充實期表現之轉錄物 (transcript),FLO7 於不同組織之表現及其他澱粉生合成相關基因之轉錄分析 27
(二) FLO7 之 3’-RACE 分析 28
(三) FLO7 和其他澱粉生合成相關基因之轉錄分析 30
肆、結果 32
一、穀粒成分分析 32
二、FLO7 於水稻胚乳內之功能及基因表現分析 39
三、胚乳內澱粉生合成相關基因表現分析 45
伍、討論 55
一、FLO7 對水稻穀粒成分的影響 55
二、FLO7 基因之轉錄分析 58
三、FLO7 之突變擾動澱粉生合成路徑 60
四、未來展望 64
陸、參考文獻 66
柒、附錄 76
dc.language.isozh-TW
dc.title水稻粉質基因 FLO7 對穀粒成分及澱粉生合成相關基因之影響zh_TW
dc.titleThe Effect of a Floury Gene Floury7 (FLO7) in Rice (Oryza sativa L.) on Grain Composition and Starch Synthesis Related Genesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邢禹依,洪傳揚,張孟基
dc.subject.keyword水稻,粉質胚乳,ABC轉運蛋白,zh_TW
dc.subject.keywordOryza sativa,floury endosperm,ABC transporter,en
dc.relation.page96
dc.rights.note未授權
dc.date.accepted2013-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved