Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17435
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊
dc.contributor.authorSuz-Tsai Liaoen
dc.contributor.author廖思采zh_TW
dc.date.accessioned2021-06-08T00:12:44Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-05
dc.identifier.citationAkira, S. (2001). Toll-like receptors and innate immunity. Advances in Immunology 78, 1-56.
Alrefai, W.A., Annaba, F., Sarwar, Z., Dwivedi, A., Saksena, S., Singla, A., Dudeja, P.K., and Gill, R.K. (2007). Modulation of human Niemann-Pick C1-like 1 gene expression by sterol: Role of sterol regulatory element binding protein 2. American Journal of Physiology: Gastrointestinal and Liver Physiology 292, G369-376.
Altmann, S.W., Davis, H.R., Jr., Zhu, L.J., Yao, X., Hoos, L.M., Tetzloff, G., Iyer, S.P., Maguire, M., Golovko, A., Zeng, M., et al. (2004). Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201-1204.
Alvaro, A., Rosales, R., Masana, L., and Vallve, J.C. (2010). Polyunsaturated fatty acids down-regulate in vitro expression of the key intestinal cholesterol absorption protein NPC1L1: no effect of monounsaturated nor saturated fatty acids. The Journal of Nutritional Biochemistry 21, 518-525.
Anstee, Q.M., Targher, G., and Day, C.P. (2013). Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nature Reviews Gastroenterology & Hepatology 10, 3481-3485.
Bonora, E., and Targher, G. (2012). Increased risk of cardiovascular disease and chronic kidney disease in NAFLD. Nature Reviews Gastroenterology & Hepatology 9, 372-381.
Brunt, E.M., Tiniakos, D.G. (2005). Pathological features of NASH. Front Biosci 10, 1475–1484.
Carpino, G., Morini, S., Ginanni Corradini, S., Franchitto, A., Merli, M., Siciliano, M., Gentili, F., Onetti Muda, A., Berloco, P., Rossi, M., et al. (2005). Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Digestive and Liver Disease 37, 349-356.
Chan, D.C., Watts, G.F., Gan, S.K., Ooi, E.M., and Barrett, P.H. (2010). Effect of ezetimibe on hepatic fat, inflammatory markers, and apolipoprotein B-100 kinetics in insulin-resistant obese subjects on a weight loss diet. Diabetes Care 33, 1134-1139.
Clark, J.M., Brancati, F.L., and Diehl, A.M. (2002). Nonalcoholic fatty liver disease. Gastroenterology 122, 1649-1657.
Day, C.P., and James, O.F. (1998). Steatohepatitis: a tale of two 'hits'? Gastroenterology 114, 842-845.
de Bari, O., Neuschwander-Tetri, B.A., Liu, M., Portincasa, P., and Wang, D.Q. (2012). Ezetimibe: its novel effects on the prevention and the treatment of cholesterol gallstones and nonalcoholic Fatty liver disease. Journal of Lipids 2012, 302847.
Del Campo, J.A., Rojas, A., and Romero-Gomez, M. (2012). Entry of hepatitis C virus into the cell: a therapeutic target. World Journal of Gastroenterology : WJG 18, 4481-4485.
Dumas, M.E., Barton, R.H., Toye, A., Cloarec, O., Blancher, C., Rothwell, A., Fearnside, J., Tatoud, R., Blanc, V., Lindon, J.C., et al. (2006). Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America 103, 12511-12516.
Duval, C., Touche, V., Tailleux, A., Fruchart, J.C., Fievet, C., Clavey, V., Staels, B., and Lestavel, S. (2006). Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochemical Biophysical Research Communications 340, 1259-1263.
Enjoji, M., and Nakamuta, M. (2010). Is the control of dietary cholesterol intake sufficiently effective to ameliorate nonalcoholic fatty liver disease? World Journal of Gastroenterology : WJG 16, 800-803.
Fabbrini, E., Mohammed, B.S., Magkos, F., Korenblat, K.M., Patterson, B.W., and Klein, S. (2008). Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134, 424-431.
Farrell, G.C., Wong, V.W., and Chitturi, S. (2013). NAFLD in Asia-as common and important as in the West. Nature Reviews Gastroenterology & Hepatology 10, 307-318.
Feng, D., Ohlsson, L., and Duan, R.D. (2010). Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression. Lipids in Health and Disease 9, 40.
Field, F.J., Watt, K., and Mathur, S.N. (2007). Ezetimibe interferes with cholesterol trafficking from the plasma membrane to the endoplasmic reticulum in CaCo-2 cells. Journal of Lipid Research 48, 1735-1745.
Filippatos, T.D., and Elisaf, M.S. (2011). Role of ezetimibe in non-alcoholic fatty liver disease. World Journal of Hepatology 3, 265-267.
Fungwe, T.V., Cagen, L., Wilcox, H.G., and Heimberg, M. (1992). Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. J Lipid Res 33, 179-191.
Ge, L., Qi, W., Wang, L.J., Miao, H.H., Qu, Y.X., Li, B.L., and Song, B.L. (2011). Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proceedings of the National Academy of Sciences of the United States of America 108, 551-556.
Ge, L., Wang, J., Qi, W., Miao, H.H., Cao, J., Qu, Y.X., Li, B.L., and Song, B.L. (2008). The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metabolism 7, 508-519.
Goldstein, J.L., Brown, M.S., Anderson, R.G., Russell, D.W., and Schneider, W.J. (1985). Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annual Review of Cell Biology 1, 1-39.
Graf, G.A., Li, W.P., Gerard, R.D., Gelissen, I., White, A., Cohen, J.C., and Hobbs, H.H. (2002). Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. The Journal of Clinical Investigation 110, 659-669.
Haque JA, McMahan RS, Campbell JS, Shimizu-Albergine M, Wilson AM, Botta D, Bammler TK, Beyer RP, Montine TJ, Yeh MM, Kavanagh TJ, Fausto N. (2010) Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice. Laboratory Investigation 90, 1704-1717
Harrison, S.A., Torgerson, S., and Hayashi, P.H. (2003). The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. The American Journal of Gastroenterology 98, 2042-2047.
Horton, J.D., Cuthbert, J.A., and Spady, D.K. (1995). Regulation of hepatic 7 alpha-hydroxylase expression and response to dietary cholesterol in the rat and hamster. The Journal of Biological Chemistry 270, 5381-5387.
Iizuka K, Horikawa Y. (2008). Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochemical and Biophysical Research Communications 374, 95-100
Hotamisligil, G.S., Shargill, N.S., and Spiegelman, B.M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91.
Ioannou, G.N., Morrow, O.B., Connole, M.L., and Lee, S.P. (2009). Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology 50, 175-184.
Iqbal, J., and Hussain, M.M. (2009). Intestinal lipid absorption. American journal of Physiology Endocrinology and Metabolism 296, E1183-1194.
Itabe, H., Obama, T., and Kato, R. (2011). The Dynamics of Oxidized LDL during Atherogenesis. Journal of Lipids 2011, 418313.
Iwayanagi, Y., Takada, T., and Suzuki, H. (2008). HNF4alpha is a crucial modulator of the cholesterol-dependent regulation of NPC1L1. Pharmaceutical Research 25, 1134-1141.
Iwayanagi, Y., Takada, T., Tomura, F., Yamanashi, Y., Terada, T., Inui, K., and Suzuki, H. (2011). Human NPC1L1 expression is positively regulated by PPARalpha. Pharmaceutical Research 28, 405-412.
Jia, L., Betters, J.L., and Yu, L. (2011). Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annual Review of Physiology 73, 239-259.
Jia, L., Ma, Y., Rong, S., Betters, J.L., Xie, P., Chung, S., Wang, N., Tang, W., and Yu, L. (2010). Niemann-Pick C1-Like 1 deletion in mice prevents high-fat diet-induced fatty liver by reducing lipogenesis. Journal of Lipid Research 51, 3135-3144.
Jusakul, A., Yongvanit, P., Loilome, W., Namwat, N., and Kuver, R. (2011). Mechanisms of oxysterol-induced carcinogenesis. Lipids in Health and Disease 10, 44.
Kainuma, M., Fujimoto, M., Sekiya, N., Tsuneyama, K., Cheng, C., Takano, Y., Terasawa, K., and Shimada, Y. (2006). Cholesterol-fed rabbit as a unique model of nonalcoholic, nonobese, non-insulin-resistant fatty liver disease with characteristic fibrosis. Journal of Gastroenterology 41, 971-980.
Kim, D., Kim, W.R., Kim, H.J., and Therneau, T.M. (2013). Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 57, 1357-1365.
Kopec, K.L., and Burns, D. (2011). Nonalcoholic fatty liver disease: a review of the spectrum of disease, diagnosis, and therapy. Nutrition in Clinical Practice 26, 565-576.
Kuo, C.J., Conley, P.B., Chen, L., Sladek, F.M., Darnell, J.E., Jr., and Crabtree, G.R. (1992). A transcriptional hierarchy involved in mammalian cell-type specification. Nature 355, 457-461.
Kurzawski M, Dziedziejko V, Post M, Wojcicki M, Urasińska E, Miętkiewski J, Droździk M. (2012). Expression of genes involved in xenobiotic metabolism and transport in end-stage liver disease: up-regulation of ABCC4 and CYP1B1. Pharmacological Reports 64, 927-939
Lee, Y.M., Sutedja, D.S., Wai, C.T., Dan, Y.Y., Aung, M.O., Zhou, L., Cheng, C.L., Wee, A., and Lim, S.G. (2008). A randomized controlled pilot study of Pentoxifylline in patients with non-alcoholic steatohepatitis (NASH). Hepatology International 2, 196-201.
Levene, A.P., and Goldin, R.D. (2012). The epidemiology, pathogenesis and histopathology of fatty liver disease. Histopathology 61, 141-152.
Ley, R.E., Peterson, D.A., and Gordon, J.I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837-848.
Li, A.C., and Glass, C.K. (2004). PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. Journal of Lipid Research 45, 2161-2173.
Ling, W., Lougheed, M., Suzuki, H., Buchan, A., Kodama, T., and Steinbrecher, U.P. (1997). Oxidized or acetylated low density lipoproteins are rapidly cleared by the liver in mice with disruption of the scavenger receptor class A type I/II gene. The Journal of Clinical Investigation 100, 244-252.
Lomonaco, R., Sunny, N.E., Bril, F., and Cusi, K. (2013). Nonalcoholic fatty liver disease: current issues and novel treatment approaches. Drugs 73, 1-14.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193, 265-275.
Maines MD. (1997). The heme oxygenase system: a regulator of second messenger gases. Pharmacology & Toxicology 37, 517–554.
Malaguarnera L, Madeddu R, Palio E, Arena N, Malaguarnera M. (2005). Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. Journal of Hepatology 42, 585-91.
McFarlane, S.I., Muniyappa, R., Francisco, R., and Sowers, J.R. (2002). Clinical review 145: Pleiotropic effects of statins: lipid reduction and beyond. The Journal of Clinical Endocrinology and Metabolism 87, 1451-1458.
Mehta, K., Van Thiel, D.H., Shah, N., and Mobarhan, S. (2002). Nonalcoholic fatty liver disease: pathogenesis and the role of antioxidants. Nutrition Reviews 60, 289-293.
Miele, L., Valenza, V., La Torre, G., Montalto, M., Cammarota, G., Ricci, R., Masciana, R., Forgione, A., Gabrieli, M.L., Perotti, G., et al. (2009). Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49, 1877-1887.
Musso, G., Cassader, M., and Gambino, R. (2011). Cholesterol-lowering therapy for the treatment of nonalcoholic fatty liver disease: an update. Current Opinion in Lipidology 22, 489-496.
Naples, M., Baker, C., Lino, M., Iqbal, J., Hussain, M.M., and Adeli, K. (2012). Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance. American Journal of Physiology: Gastrointestinal and Liver Physiology 302, G1043-1052.
Nelson, A., Torres, D.M., Morgan, A.E., Fincke, C., and Harrison, S.A. (2009). A pilot study using simvastatin in the treatment of nonalcoholic steatohepatitis: A randomized placebo-controlled trial. Journal of Clinical Gastroenterology 43, 990-994.
Nomura, M., Ishii, H., Kawakami, A., and Yoshida, M. (2009). Inhibition of hepatic Niemann-Pick C1-like 1 improves hepatic insulin resistance. American Journal of Physiology: Endocrinology and Metabolism 297, E1030-1038.
Oka, K., Kobayashi, K., Sullivan, M., Martinez, J., Teng, B.B., Ishimura-Oka, K., and Chan, L. (1997). Tissue-specific inhibition of apolipoprotein B mRNA editing in the liver by adenovirus-mediated transfer of a dominant negative mutant APOBEC-1 leads to increased low density lipoprotein in mice. The Journal of Biological Chemistry 272, 1456-1460.
Osborne, J.C., Jr., Bronzert, T.J., and Brewer, H.B., Jr. (1977). Self-association of apo-C-I from the human high density lipoprotein complex. The Journal of Biological Chemistry 252, 5756-5760.
Park, E.J., Lee, J.H., Yu, G.Y., He, G., Ali, S.R., Holzer, R.G., Osterreicher, C.H., Takahashi, H., and Karin, M. (2010). Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197-208.
Patel, M.D., and Thompson, P.D. (2006). Phytosterols and vascular disease. Atherosclerosis 186, 12-19.
Patsch, J.R., Sailer, S., Kostner, G., Sandhofer, F., Holasek, A., and Braunsteiner, H. (1974). Separation of the main lipoprotein density classes from human plasma by rate-zonal ultracentrifugation. Journal of Lipid Research 15, 356-366.
Pramfalk, C., Jiang, Z.Y., Cai, Q., Hu, H., Zhang, S.D., Han, T.Q., Eriksson, M., and Parini, P. (2010). HNF1alpha and SREBP2 are important regulators of NPC1L1 in human liver. Journal of Lipid Research 51, 1354-1362.
Pramfalk, C., Jiang, Z.Y., and Parini, P. (2011). Hepatic Niemann-Pick C1-like 1. Current Opinion in Lipidology 22, 225-230.
Pramfalk, C., Karlsson, E., Groop, L., Rudel, L.L., Angelin, B., Eriksson, M., and Parini, P. (2009). Control of ACAT2 liver expression by HNF4{alpha}: lesson from MODY1 patients. Arteriosclerosis, Thrombosis and Vascular Biology 29, 1235-1241.
Qureshi, K., and Abrams, G.A. (2007). Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World Journal of Gastroenterology : WJG 13, 3540-3553.
Ratziu, V., Charlotte, F., Bernhardt, C., Giral, P., Halbron, M., Lenaour, G., Hartmann-Heurtier, A., Bruckert, E., Poynard, T., and Group, L.S. (2010). Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 51, 445-453.
Rhiannon N. Hardwick, Craig D. Fisher, Mark J. Canet, April D. Lake, Nathan J.C. (2010). Diversity in Antioxidant Response Enzymes in Progressive Stages of Human Nonalcoholic Fatty Liver Disease. Drug Metabolism and Disposition 38, 2293-2301
Rowley, C.W., Staloch, L.J., Divine, J.K., McCaul, S.P., and Simon, T.C. (2006). Mechanisms of mutual functional interactions between HNF-4alpha and HNF-1alpha revealed by mutations that cause maturity onset diabetes of the young. American Journal of Physiology: Gastrointestinal and Liver Physiology 290, G466-475.
Sabio, G., Das, M., Mora, A., Zhang, Z., Jun, J.Y., Ko, H.J., Barrett, T., Kim, J.K., and Davis, R.J. (2008). A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539-1543.
Sane, A.T., Sinnett, D., Delvin, E., Bendayan, M., Marcil, V., Menard, D., Beaulieu, J.F., and Levy, E. (2006). Localization and role of NPC1L1 in cholesterol absorption in human intestine. Journal of Lipid Research 47, 2112-2120.
Savard, C., Tartaglione, E.V., Kuver, R., Geoffrey Haigh, W., Farrell, G.C., Subramanian, S., Chait, A., Yeh, M.M., Quinn, L.S., and Ioannou, G.N. (2012). Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology.
Savard, C., Tartaglione, E.V., Kuver, R., Haigh, W.G., Farrell, G.C., Subramanian, S., Chait, A., Yeh, M.M., Quinn, L.S., and Ioannou, G.N. (2013). Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 57, 81-92.
Schaffler, A., Scholmerich, J., and Buchler, C. (2005). Mechanisms of disease: adipocytokines and visceral adipose tissue--emerging role in intestinal and mesenteric diseases. Nature Clinical Practice Gastroenterology & Hepatology 2, 103-111.
Schmitz, G., and Grandl, M. (2009). Endolysosomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochimica Biophysica Acta 1791, 524-539.
Senn, J.J., Klover, P.J., Nowak, I.A., Zimmers, T.A., Koniaris, L.G., Furlanetto, R.W., and Mooney, R.A. (2003). Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. The Journal of Biological Chemistry 278, 13740-13746.
Smits, M.M., Ioannou, G.N., Boyko, E.J., and Utzschneider, K.M. (2013). Non-alcoholic fatty liver disease as an independent manifestation of the metabolic syndrome: results of a US national survey in three ethnic groups. Journal of Gastroenterology and Hepatology 28, 664-670.
Strauss, R.S., Barlow, S.E., and Dietz, W.H. (2000). Prevalence of abnormal serum aminotransferase values in overweight and obese adolescents. The Journal of Pediatrics 136, 727-733.
Subramanian, S., Goodspeed, L., Wang, S., Kim, J., Zeng, L., Ioannou, G.N., Haigh, W.G., Yeh, M.M., Kowdley, K.V., O'Brien, K.D., et al. (2011). Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. Journal of Lipid Research 52, 1626-1635.
Suchy, D., Labuzek, K., Stadnicki, A., and Okopien, B. (2011). Ezetimibe--a new approach in hypercholesterolemia management. Pharmacological Reports 63, 1335-1348.
Talalay P and Dinkova-Kostova AT (2004) Role of nicotinamide quinone oxidoreductase 1 (NQO1) in protection against toxicity of electrophiles and reactive oxygen intermediates. Methods Enzymology 382, 355–364.
Temel, R.E., Tang, W., Ma, Y., Rudel, L.L., Willingham, M.C., Ioannou, Y.A., Davies, J.P., Nilsson, L.M., and Yu, L. (2007). Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. The Journal of Clinical Iinvestigation 117, 1968-1978.
Terunuma, S., Kumata, N., and Osada, K. (2013). Ezetimibe impairs uptake of dietary cholesterol oxidation products and reduces alterations in hepatic cholesterol metabolism and antioxidant function in rats. Lipids 48, 587-595.
Valasek, M.A., Clarke, S.L., and Repa, J.J. (2007). Fenofibrate reduces intestinal cholesterol absorption via PPARalpha-dependent modulation of NPC1L1 expression in mouse. Journal of Lipid Research 48, 2725-2735.
Valasek, M.A., Repa, J.J., Quan, G., Dietschy, J.M., and Turley, S.D. (2008). Inhibiting intestinal NPC1L1 activity prevents diet-induced increase in biliary cholesterol in Golden Syrian hamsters. American Journal of Physiology: Gastrointestinal and Liver Physiology 295, G813-822.
Van Rooyen, D.M., Gan, L.T., Yeh, M.M., Haigh, W.G., Larter, C.Z., Ioannou, G., Teoh, N.C., and Farrell, G.C. (2013). Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. Journal of Hepatology. 59:144-152.
Vlahcevic, Z.R., Pandak, W.M., and Stravitz, R.T. (1999). Regulation of bile acid biosynthesis. Gastroenterology Clinics of North America 28, 1-25.
Vrins, C.L., van der Velde, A.E., van den Oever, K., Levels, J.H., Huet, S., Oude Elferink, R.P., Kuipers, F., and Groen, A.K. (2009). Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. Journal of Lipid Research 50, 2046-2054.
Walenbergh, S.M., Koek, G.H., Bieghs, V., and Shiri-Sverdlov, R. (2013). Non-alcoholic steatohepatitis: The role of oxidized low-density lipoproteins. Journal of Hepatology 58, 801-810.
Wang, H.H., Portincasa, P., Mendez-Sanchez, N., Uribe, M., and Wang, D.Q. (2008). Effect of ezetimibe on the prevention and dissolution of cholesterol gallstones. Gastroenterology 134, 2101-2110.
Wang, L.J., and Song, B.L. (2012). Niemann-Pick C1-Like 1 and cholesterol uptake. Biochimica Biophysica Acta 1821, 964-972.
Wong, J., Quinn, C.M., and Brown, A.J. (2006). SREBP-2 positively regulates transcription of the cholesterol efflux gene, ABCA1, by generating oxysterol ligands for LXR. The Biochemical Journal 400, 485-491.
Wancket LM, Meng X, Rogers LK, Liu Y. (2012). Mitogen-activated protein kinase phosphatase (Mkp)-1 protects mice against acetaminophen-induced hepatic injury. Toxicologic Pathology 40, 1095-1105
Woollett, L.A., Wang, Y., Buckley, D.D., Yao, L., Chin, S., Granholm, N., Jones, P.J., Setchell, K.D., Tso, P., and Heubi, J.E. (2006). Micellar solubilisation of cholesterol is essential for absorption in humans. Gut 55, 197-204.
Wouters, K., van Bilsen, M., van Gorp, P.J., Bieghs, V., Lutjohann, D., Kerksiek, A., Staels, B., Hofker, M.H., and Shiri-Sverdlov, R. (2010). Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Letters 584, 1001-1005.
Wouters, K., van Gorp, P.J., Bieghs, V., Gijbels, M.J., Duimel, H., Lutjohann, D., Kerksiek, A., van Kruchten, R., Maeda, N., Staels, B., et al. (2008). Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 48, 474-486.
Yamanashi, Y., Takada, T., and Suzuki, H. (2007). Niemann-Pick C1-like 1 overexpression facilitates ezetimibe-sensitive cholesterol and beta-sitosterol uptake in CaCo-2 cells. The Journal of Pharmacology and Experimental Therapeutics 320, 559-564.
黄繼漢,黄曉暉,陳志揚,鄭青山,孫瑞元 (2004) 藥理試驗中動物間和動物與人體間的等效劑量換算。中國藥理學會。
侯丞 (2009) 我有脂肪肝---怎麼辦?台灣肝臟學術文教基金會刊第38期。
楊禮禪 (2011) 中草藥複方B預防二乙基亞硝胺及高油脂高膽固醇飼料所造成的非酒精性脂肪肝炎與肝臟纖維化。國立台灣大學醫學院生化學研究所碩士論文。
羅凱晏 (2012) 以倉鼠為動物模式探討中草藥複方B及單方B28之降低密度脂蛋白膽固醇之作用。國立台灣大學醫學院生化學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17435-
dc.description.abstract非酒精性脂肪肝 (Nonalcoholic fatty liver;NAFLD) 為最常見的非病毒性慢性肝病,全球的盛行率隨著肥胖的增加持續的在提高。其病程有不同嚴重程度的發展,由單純的脂肪堆積,到較嚴重的非酒精性脂肪肝炎 (Nonalcoholic stetohepatitis)、肝纖維化,甚至到肝硬化。到目前並沒有明確的方法可以預防及治療非酒精性脂肪肝炎,在中草藥中以許多具有保肝作用的藥材,可能會有一些藥材具有預防或治療非酒精性脂肪肝炎的作用。實驗室的學長們經過多年的篩選及測試,發現B28號藥具有預防在倉鼠以高脂高膽固醇飼料誘發的非酒精性脂肪肝與肝炎的作用。B28號藥是B65號藥經加工處理所得到的,我的實驗目的是要探討未加工的B65號藥是否就具有和B28號藥相同的效果,並建立細胞實驗模式做為B28號藥有效成分的篩選平台。
我們先以動物實驗探討未加工的B65號藥是否就具有和B28號藥相同的效果。將九週齡的倉鼠分成五組,控制組餵食一般chow diet,另外四組實驗組則餵食添加23%脂肪及0.5%膽固醇的飼料 (HFC),為HFC、HFC+B28L、HFC+B28H及HFC+B65H組。四實驗組分別每日以胃管灌食同體積之滅菌水,或含118 mg (B28L) 或335 mg B28 (B28H) 號藥萃取物/day/kg BW或222 mg B65 (B65H) 號藥萃取物/day/kg BW,為期6週。結果顯示B28號藥會降低血液與肝臟中的膽固醇濃度,並具有改善非酒精性脂肪肝炎的效果,且這樣的效果有劑量依存性。此外,我們也發現了B28號藥不僅能夠降低小腸中與肝臟中的NPC1L1表現量,同時也會提高肝臟中CYP7A1與LDL receptor的表現量。但是,B65號藥則都沒有上述作用。
在細胞實驗上,我們建立了Caco-2腸細胞與HuS-E/2肝細胞模式來篩選B28號藥有效成分。Caco-2腸細胞在給予含不同濃度的膽固醇的脂肪微粒 (micelle) 後會提高NPC1L1 mRNA及蛋白質表現,細胞內的三酸甘油酯與膽固醇濃度以及組裝乳糜微粒相關基因的表現。在培養液中加入0.6 mg/mL B28號藥萃取物8小時後,可以觀察到細胞內的三酸甘油酯與膽固醇濃度及NPC1L1及apoB、ACAT-2、MTP mRNA表現量降低。HuS-E/2肝細胞培養液中直接加入0.6 mg/mL B28號藥萃取物8小時後,也可以觀察到NPC1L1 mRNA及蛋白質表現降低。顯示這兩種細胞模式可作為B28號藥有效成分的篩選平台。另外,我們以不同極性的四種溶劑 (90%methanol、hexane、butanol及水四種) 分離B28號藥,經過細胞實驗測試發現只有水層的萃取物具有降低NPC1L1 mRNA表現量的效果。
我們推測可能在B65號藥加工過程中產生了我們目前還不知道的化學變化,導致B28號藥在動物實驗與細胞實驗中都具有抑制NPC1L1表現的作用。後續的研究希望將水層的萃取物做更精細的分離,再透過兩種細胞模式進行篩選與找出分子作用機制,之後再以動物實驗確認。
zh_TW
dc.description.abstractNonalcoholic fatty liver disease (NAFLD) is one of the most common non-viral chronic liver diseases. The global prevalence of NAFLD rises continuously with the increasing population of obesity. NAFLD has a histologic spectrum ranging from simple steatosis, nonalcoholic steatohepatitis (NASH), to fibrosis and cirrhosis. There are no medical treatments yet for NAFLD. Various Chinese herbal medicines are believed to have liver-protective functions and are widely used in clinical practice. In our previous studies, we have discovered an Herb-B28 which showed strong preventive effects in high fat/high cholesterol (HFC) diet-induced NAFLD and NASH in hamster. Herb-B28 is processed product from Herb-B65. The aims of our study are to test whether the Herb-B65 exerts the same effects as Herb-B28 in HFC diet fed hamster, and to establish cell models for screening the active component(s) in Herb-B28.
First, we conducted an animal experiment to compare the effects of Herbs B28 and B65. Male gold Syrian hamsters were divided into five groups. The control group was fed with chow diet, and the four experimental groups were fed with a HFC diet for 6 weeks. The experimental groups are HFC, HFC+B28L, HFC+B28H, and HFC+B65H group, hamsters in these groups were gavaged with distilled water, 118 mg B28 extract/day/kg BW, 355 mg B28 extract/day/kg BW, and 222 mg B65 extract/day/kg BW, respectively. The results showed that Herb-B28 lowered plasma and liver cholesterol, and prevented NASH and liver fibrosis in a dose-dependent manner. We observed intestinal and hepatic NPC1L1 mRNA and protein, and up-regulate expression of hepatic CYP7A1 and LDL-receptor mRNA in Herb-B28 treated hamsters. However, Herb-B65 did not exhibit all these effects.
We established cell-based models for screening active components in Herb-B28. When the CaCo-2 enterocytes were cultured with micelles containing various amount of cholesterol, the cellular cholesterol and triacylglyceride (TG), and levels of NPC1L1 mRNA and protein, and levels of mRNA of genes involved in chylomicron production were increased along with increasing amount of cholesterol in the micelle. Addition of 0.6 mg extract/ml of Herb-B28 to the cells resulted in a decrease of cellular TG and cholesterol, and mRNA levels of NPC1L1, apoB, ACAT2 and MTP. Addition of 0.6 mg/ml Herb-B28 extract also resulted in decrease of NPC1L1 mRNA and protein expression level in HuS-E/2 hepatocytes. The results suggest that these cell models can be used for screening of active compound in Herb-B28. The Herb-B28 was partitioned using solvents with different polarity (90% methanol, hexane, butanol, and water) and extracts were tested in both CaCo-2 and HuS-E/2 cells. The results show that only water-soluble fractional extract has effects on the down-regulation of NPC1L1 mRNA level.
We speculated that chemical reactions may have occurred during the processing of Herb-B65 that leads to Herb-B28 having the effects of inhibiting NPC1L1 expression. The two cell models will be used for the identification of active component in the water extract of Herb-B28.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:12:44Z (GMT). No. of bitstreams: 1
ntu-102-R00442001-1.pdf: 3540978 bytes, checksum: 465322b812985501ed251835a1f882d8 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
口試委員審定書………………………..…………………………….……....I
誌謝…………………………………..…..…………………………….……....II
摘要…………………………..…………………………….……………………......V
Abstract………………………….…………………………….…………………VII
縮寫對照表………………………….…………………………….……………......IX
第一章、 緒論………………………….…………………………….…………….....1
第一節、 文獻回顧………………………….…………………………….........2
第二節、 研究動機與目的………………………….………………………...10
第二章、 材料與方法………………………….…………………………….……...12
第一節、 實驗材料………………………………………………………........13
第二節、 細胞實驗………………………….…………………………….......14
第三節、 動物實驗………………………….…………………………….......25
第四節、 統計分析………………………….…………………………….......35
第三章、 實驗結果………………………….…………………………….………...36
第一節、 中草藥萃取與分離………………………….………………….......37
第二節、 male golden Syrian hamsters 雄性倉鼠動物實驗…………………37
第三節、 細胞實驗………………………….…………………………….......42
第四章、 討論………………………….…………………………….……………...48
第一節、總結………………………….…………………………….…………49
第二節、動物實驗………………………….…………………………….........49
第三節、細胞實驗………………………….…………………………….........52
第四節、B28號藥與B65號藥的成分不同………….………..…………….…59
第五節、未來發展………………………….…………………………….……59
第五章、 圖表………………………….…………………………….……………..61
參考文獻………………………….…………………………….……………………84
附錄一………………………….…………………………….……………………....98
附錄二………………………….…………………………….……………………....99
附錄三………………………….…………………………….……………………..100
附錄四………………………….…………………………….……………………..101
dc.language.isozh-TW
dc.titleB28號藥改善倉鼠因高脂高膽固醇飼料所引起的非酒精性脂肪肝炎涉及降低小腸與肝臟中的NPC1L1表現zh_TW
dc.titleHerb-B28 ameliorates high fat/cholesterol diet induced NASH in hamsters involves down-regulation of NPC1L1 in small intestine and liveren
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林榮耀,吳永昌,王沛然,蔡維人
dc.subject.keyword非酒精性脂肪肝,非酒精性脂肪肝炎,NPC1L1,CaCo-2細胞,Hus-E/2細胞,中草藥,zh_TW
dc.subject.keywordNAFLD,NASH,NPC1L1,CaCo-2 cell,HuS-E/2 cell,Chinese herbal medicine,en
dc.relation.page101
dc.rights.note未授權
dc.date.accepted2013-08-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
3.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved