請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17425完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱家瑩(Chia-Ying Chu) | |
| dc.contributor.author | Yen-Chun Chen | en |
| dc.contributor.author | 陳妍君 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:12:12Z | - |
| dc.date.copyright | 2013-08-09 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-05 | |
| dc.identifier.citation | Akao, Y., Marukawa, O., Morikawa, H., Nakao, K., Kamei, M., Hachiya, T., and Tsujimoto, Y. (1995). The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. Cancer research 55, 3444-3449.
Akao, Y., Yoshida, H., Matsumoto, K., Matsui, T., Hogetu, K., Tanaka, N., and Usukura, J. (2003). A tumour-associated DEAD-box protein, rck/p54 exhibits RNA unwinding activity toward c-myc RNAs in vitro. Genes to cells : devoted to molecular & cellular mechanisms 8, 671-676. Bergkessel, M., and Reese, J.C. (2004). An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery. Genetics 167, 21-33. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., and Heck, A.J. (2009). Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature protocols 4, 484-494. Caballero, O.L., Zhao, Q., Rimoldi, D., Stevenson, B.J., Svobodova, S., Devalle, S., Rohrig, U.F., Pagotto, A., Michielin, O., Speiser, D., et al. (2010). Frequent MAGE mutations in human melanoma. PloS one 5. Caruthers, J.M., and McKay, D.B. (2002). Helicase structure and mechanism. Current opinion in structural biology 12, 123-133. Chang, L.C., and Lee, F.J. (2012). The RNA helicase Dhh1p cooperates with Rbp1p to promote porin mRNA decay via its non-conserved C-terminal domain. Nucleic acids research 40, 1331-1344. Cheng, Z.H., Coller, J., Parker, R., and Song, H. (2005). Crystal structure and functional analysis of DEAD-box protein Dhh1p. Rna-a Publication of the Rna Society 11, 1258-1270. Chu, C.Y., and Rana, T.M. (2006). Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS biology 4, e210. Chu, Y.W., Yang, P.C., Yang, S.C., Shyu, Y.C., Hendrix, M.J., Wu, R., and Wu, C.W. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. American journal of respiratory cell and molecular biology 17, 353-360. Coller, J.M., Tucker, M., Sheth, U., Valencia-Sanchez, M.A., and Parker, R. (2001). The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. Rna 7, 1717-1727. Cordin, O., Banroques, J., Tanner, N.K., and Linder, P. (2006). The DEAD-box protein family of RNA helicases. Gene 367, 17-37. de Vries, S., Naarmann-de Vries, I.S., Urlaub, H., Lue, H., Bernhagen, J., Ostareck, D.H., and Ostareck-Lederer, A. (2013). Identification of DEAD-box RNA helicase 6 (DDX6) as a cellular modulator of vascular endothelial growth factor expression under hypoxia. The Journal of biological chemistry 288, 5815-5827. Deng, J., Fujimoto, J., Ye, X.F., Men, T.Y., Van Pelt, C.S., Chen, Y.L., Lin, X.F., Kadara, H., Tao, Q., Lotan, D., et al. (2010). Knockout of the tumor suppressor gene Gprc5a in mice leads to NF-kappaB activation in airway epithelium and promotes lung inflammation and tumorigenesis. Cancer prevention research 3, 424-437. Desouki, M.M., Liao, S., Conroy, J., Nowak, N.J., Shepherd, L., Gaile, D.P., and Geradts, J. (2011). The genomic relationship between primary breast carcinomas and their nodal metastases. Cancer investigation 29, 300-307. Kim, V.N., Han, J., and Siomi, M.C. (2009). Biogenesis of small RNAs in animals. Nature reviews Molecular cell biology 10, 126-139. Kubo, T., Wada, T., Yamaguchi, Y., Shimizu, A., and Handa, H. (2006). Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3'-UTRs. Nucleic acids research 34, 6264-6271. Kulkarni, M., Ozgur, S., and Stoecklin, G. (2010). On track with P-bodies. Biochemical Society transactions 38, 242-251. Lin, F., Wang, R., Shen, J.J., Wang, X., Gao, P., Dong, K., and Zhang, H.Z. (2008). Knockdown of RCK/p54 expression by RNAi inhibits proliferation of human colorectal cancer cells in vitro and in vivo. Cancer Biol Ther 7, 1669-1676. Liu, J., Valencia-Sanchez, M.A., Hannon, G.J., and Parker, R. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature cell biology 7, 719-723. Liu, S.L., Zhong, S.S., Ye, D.X., Chen, W.T., Zhang, Z.Y., and Deng, J. (2013). Repression of G protein-coupled receptor family C group 5 member A is associated with pathologic differentiation grade of oral squamous cell carcinoma. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. Lu, D., and J.Yunis, J. (1992). Cloning, expression and localization of an RNA helicase gene from a human lymphoid cell line with chromosomal breakpoint 11q23.3. Nucleic acids research 20, 1967-1972. Matsui, T., Hogetsu, K., Usukura, J., Sato, T., Kumasaka, T., Akao, Y., and Tanaka, N. (2006). Structural insight of human DEAD-box protein rck/p54 into its substrate recognition with conformational changes. Genes to cells : devoted to molecular & cellular mechanisms 11, 439-452. Minshall, N., Kress, M., Weil, D., and Standart, N. (2009). Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly. Molecular biology of the cell 20, 2464-2472. Miyaji, K., Nakagawa, Y., Matsumoto, K., Yoshida, H., Morikawa, H., Hongou, Y., Arisaka, Y., Kojima, H., Inoue, T., Hirata, I., et al. (2003). Overexpression of a DEAD box/RNA helicase protein, rck/p54, in human hepatocytes from patients with hepatitis C virus-related chronic hepatitis and its implication in hepatocellular carcinogenesis. J Viral Hepat 10, 241-248. Nakagawa, Y., Morikawa, H., Hirata, I., Shiozaki, M., Matsumoto, A., Maemura, K., Nishikawa, T., Niki, M., Tanigawa, N., Ikegami, M., et al. (1999). Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. Br J Cancer 80, 914-917. Nakamura, A., Amikura, R., Hanyu, K., and Kobayashi, S. (2001). Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128, 3233-3242. Ozgur, S., Chekulaeva, M., and Stoecklin, G. (2010). Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Molecular and cellular biology 30, 4308-4323. Qi, M.Y., Wang, Z.Z., Zhang, Z., Shao, Q., Zeng, A., Li, X.Q., Li, W.Q., Wang, C., Tian, F.J., Li, Q., et al. (2012). AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54. Molecular and cellular biology 32, 913-928. Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature protocols 2, 1896-1906. Rocak, S., and Linder, P. (2004). DEAD-box proteins: the driving force behind RNA metabolism. Nature reviews Molecular cell biology 5, 232-241. Saito, K., Kondo, E., and Matsushita, M. (2011). MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic acids research 39, 6086-6099. Strahl-Bolsinger, S., and Tanner, W. (1993). A yeast gene encoding a putative RNA helicase of the 'DEAD'-box family. Yeast 9, 429-432. Svitkin, Y.V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G.J., and Sonenberg, N. (2001). The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5' secondary structure. Rna 7, 382-394. Tanner, N.K., and Linder, P. (2001). DExD/H box RNA helicases: From generic motors to specific dissociation functions. Molecular cell 8, 251-262. Tao, Q., Fujimoto, J., Men, T., Ye, X., Deng, J., Lacroix, L., Clifford, J.L., Mao, L., Van Pelt, C.S., Lee, J.J., et al. (2007). Identification of the retinoic acid-inducible Gprc5a as a new lung tumor suppressor gene. Journal of the National Cancer Institute 99, 1668-1682. Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. The EMBO journal 1, 945-951. Weston, A., and Sommerville, J. (2006). Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic acids research 34, 3082-3094. Yang, Q., Gilmartin, G.M., and Doublie, S. (2010). Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing. Proceedings of the National Academy of Sciences of the United States of America 107, 10062-10067. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17425 | - |
| dc.description.abstract | RCK/p54是DEAD-box蛋白質的一種,在轉錄後調控(post-transcriptional regulation)基因表現扮演重要角色。在酵母菌、非洲爪蟾、以及果蠅中的研究顯示出RCK/p54的同源基因會參與基因的轉譯抑制(translational repression)進而調控基因表現。在人類miRNA路徑中,RCK/p54會與Ago2及其他蛋白質形成靜默蛋白複合體(miRNA-induced silencing complex),抑制目標RNA轉譯或是將其儲存。在人類大腸癌研究發現RCK/p54大量表現於癌細胞中。除此之外,RCK/p54也高度表現在C型肝炎引起的肝癌細胞中。然而,RCK/p54在癌症中所扮演的角色及其機制皆不甚清楚。為了探討RCK/p54於癌症中的所扮演的角色及其機制,我們利用次世代定序以及定量蛋白質體分析與RCK/p54蛋白質結合的RNA,及降低RCK/p54表現量後所造成的下游RNA及蛋白質表現量變化。研究結果顯示癌細胞的轉移能力會隨著RCK/p54過量表現而隨之提高。此外,藉由比對RCK/p54蛋白質所結合的RNA與蛋白質體的資料,我們發現RCK/p54可能直接經由轉譯抑制調控NUDT21以及GPRC5A兩個基因的蛋白表現。經由次世代定序分析去除RCK/p54時HeLa細胞的基因表現變化圖譜,發現當細胞去除RCK/p54時,MAGEE1的表現量上升,顯示其表現可能間接由RCK/p54調控。本研究顯示細胞轉移程度與RCK/p54表現量成正相關,並且可能是經由調控NUDT21、GPRC5A以及MAGEE1進而影響癌症細胞的惡性化。 | zh_TW |
| dc.description.abstract | RCK/p54 is a member of DEAD-box protein family, and it plays a role in post-transcriptional regulation. Previous studies of RCK/p54 homologues in yeast, Xenopus and Drosophila showed that RCK/p54 participated in regulation of translational repression and moderates RNA stability. RCK/p54 is also involved in miRNA pathway. It interacts with Ago2 in miRNA-induced silencing complex (miRISC), which represses mRNA translation or stores target mRNA in processing body (P-body). Several studies in cancer biology showed that RCK/p54 is highly expressed in tumors. However, the detail mechanism of RCK/p54 in regulation of cancer progression is unrevealed. In this study, we aim to identify the role of RCK/p54 in cancer metastasis. We found out that migration of cancer cell was increased in cells overexpressing RCK/p54. Comparing the deep sequencing result of RCK/p54-associated mRNA and the change of proteomic profile in RCK/p54- depleted cell, we found that RCK/p54 may directly regulate NUDT21 and GPRC5A. MAGEE1 mRNA was increased in RCK/p54-depleted cell, but did not associate with RCK/p54, suggesting that MAGEE1 is a potential downstream target of RCK/p54. These findings suggest that RCK/p54 protein regulates cancer metastasis through various pathways and the potential targets or downstream of RCK/p54 were identified. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:12:12Z (GMT). No. of bitstreams: 1 ntu-102-R99b41017-1.pdf: 9890870 bytes, checksum: d6519ac2460ec2175065e61283d04d64 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 1. Introduction 1 1.1 Discovery of RCK/p54 1 1.2 DEAD-box proteins and post-transcriptional control of gene expression 1 1.3 Functions of RCK/p54 domains and motifs. 2 1.4 RCK/p54 participates in miRNA pathway. 3 1.5 The role of RCK/p54 in diseases. 4 2. Materials and methods 6 2.1 DNA constructs and siRNAs 6 2.2 Cell culture and transfection 6 2.3 Immunoprecipitation and Western blot 6 2.4 In vitro invasion and migration assays 7 2.5 RNA extraction, reverse transcription and real-time polymerase chain reaction (real-time PCR). 8 2.6 Next-generation sequencing (NGS) 8 2.7 Microarray 9 2.8 Quantitative proteomics 10 3. Results 11 3.1 RCK/p54 is highly expressed in highly malignant lung adenocarcinoma cell line. 11 3.2. The N-terminal RCK/p54 regulates the migration or invasion abilities of lung cancer cell lines 12 3.3 RCK/p54-Ago2 interaction in microRNA pathway was not involved in the regulation of cell migration. 14 3.4 Migration activity of HeLa cell was increased with overexpression of RCK/p54 15 3.5 Identification of RCK/p54-associated genes through NGS was available. 15 3.6 NUDT21 and GPRC5A were associated with RCK/p54 and the their expression of protein level were up-regulated in RCK/p54-deficient cell 17 3.7 Expression of MAGEE1 was increased in RCK/p54-depleted cell. 19 4. Discussion 21 4.1 Expression level of RCK/p54 in cells affects migration and invasion ability of cells. 21 4.2 The RCK/p54-regulated cell migration was not related with RCK/p54-Ago2 interaction. 21 4.3 ATP-binding ability of RCK/p54 was required for regulation of metastasis. 22 4.4 Protein expression of NUDT21 and GPRC5A were regulated by RCK/p54 directly. 23 4.5 The network of RCK/p54 regulated genes in cancer. 24 5. References 28 6. Figures and tables 33 7. Supplementary data 50 | |
| dc.language.iso | en | |
| dc.title | 人類RNA靜默複合體(RISC)組成蛋白質參與癌化進程之功能性探討 | zh_TW |
| dc.title | Functional Analysis of RCK/p54, a Human RISC Component, in Cancer Progression. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李心予(Hsinyu Lee),黃偉邦(Wei-Pang Huang),朱家瑜(Chia-Yu Chu) | |
| dc.subject.keyword | 轉錄後調控,RCK/p54,轉錄抑制,癌症,惡性化, | zh_TW |
| dc.subject.keyword | post-translational repression,RCK/p54,translational repression,cancer,cell migration, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
