請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17408完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 瞿大雄(Tah-Hsiung Chu) | |
| dc.contributor.author | Wei-Chiang Lee | en |
| dc.contributor.author | 李偉強 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:11:17Z | - |
| dc.date.copyright | 2013-08-09 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-06 | |
| dc.identifier.citation | [1] H. Sobol and K. Tomiyasu, “Milestones of microwaves,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 594–611, Mar. 2002.
[2] M. Skolnik, “Role of radar in microwaves,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 625–632, Mar. 2002. [3] W. Keydel, “Perspectives and visions for future SAR systems,” IEE Proc. Radar, Sonar Navigat., vol. 150, no. 3, pp. 97–103, June 2003. [4] B. A. Kopp, M. Borkowski, and G. Jerinic, “Transmit/receive modules,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 827–834, Mar. 2002. [5] J. M. Osepchuk, “Microwave power applications,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 975–985, Mar. 2002. [6] J. M. Osepchuk, “A history of microwave heating applications,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 9, pp. 1200–1224, Sep. 1984. [7] A. Rosen, M. A. Stuchly, and A. Vander Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 963–974, Mar. 2002. [8] G. C. Giakos, M. Pastorino. F. Russo, S. Chowdhury, N. Shah, and W. Davros, “Noninvasive imaging for the new century,” IEEE Instrument. Measur. Mag., vol. 2, no. 2, pp. 32–35 and 49, June 1999. [9] E. C. Fear, X. Li, S. C. Hagness, and M. A. Stuchly, “Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions,” IEEE Trans. Biomed. Engng., vol. 49, no. 8, pp. 812–822, Aug. 2002. [10] I. T. Rekanos and A. Raisanen, “Microwave imaging in the time domain of buried multiple scatterers by using FDTD-based optimization technique,” IEEE Trans. Magnetics., vol. 39, no. 3, pp. 1381–1384, May 2003. [11] L. Q. Huo, W. Zhong, T. T. Qing Zhang, J. A. Bryan, G. A. Ybarra, L. W. Nolte, and W. T. Joines, “Active microwave imaging I-2-D forward and inverse scattering methods,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 123-133, Jan. 2002. [12] E. C. Fear, P. M. Meaney, and M. A. Stuchly, “Microwave for breast cancer detection?” IEEE Potentials, vol. 22, no. 1, pp. 12–18, Feb.–Mar. 2003. [13] K. J. Russell, “Microwave power combining techniques,” IEEE Trans. Microw. Theory Tech., vol. MTT-27, no. 5, pp. 472–478, May 1979. [14] Q. Xue, K. Song, and C. H. Chan, “China: power combiners/dividers,” IEEE Microw. Mag., vol. 12, no. 5, pp. 96–106, May 2011. [15] E. Wilkinson, “An N-way hybrid power divider,” IRE Trans. Microw. Theory Tech., vol. MTT-8, no. 1, pp. 116–118, Jan. 1960. [16] J. M. Schellenberg and M. Cohn, “A wideband radial power combiner for FET amplifiers,” in IEEE Int. Solid-State Circuits Conf., Feb. 1978, pp. 164–166. [17] A. E. Fathy, S. W. Lee, and D. Kalokities, “A simplified design approach for radial power combiners,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 247–255, Jan. 2006. [18] K. Song, Y. Fan, and X. Zhou, “Broadband radial waveguide power amplifier using a spatial power combining technique,” IET Microw. Antennas Propag., vol. 3, no. 8, pp. 1179–1185, Dec. 2009. [19] D. I. L. de Villiers, P. W. van der Walt, and P. Meyer, “Design of a ten-way conical transmission line power combiner,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 302–308, Feb. 2007. [20] K. Song, Y. Fan, and Y. Zhang, “Eight-way substrate integrated waveguide power divider with low insertion loss,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 6, pp. 1473–1477, June 2008. [21] K. Song, Y. Fan, and Q. Xue, “Millimeter-wave power amplifier based on coaxial-waveguide power-combining circuits,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 46–48, Jan. 2010. [22] R. J. Mohr, “A microwave power divider,” IRE Trans. Microw. Theory Tech., vol. MTT-9, no. 6, p. 573, Nov. 1961. [23] M. Faulkner, P. Chye, and R. Hansen, “V-band PHEMT power amplifier using an N-way chain combiner,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1994, pp. 265–268. [24] S. Mizushina, “2n oscillators combined with 3-dB directional couplers for output power summing,” IEEE Proc., vol. 55, no. 12, pp. 2166–2167, Dec. 1967. [25] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, New York: Wiley, 2005. [26] G. V. Eleftheriades and K. G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications, New York: Wiley, 2005. [27] A. Lai, T. Itoh, and C. Caloz, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34–50, Sep. 2004. [28] A. Lai, K. M. K. H. Leong, and T. Itoh, “A novel N-port series divider using infinite wavelength phenomena,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2005, pp. 1001–1004. [29] N. Nagai, E. Maekawa, and K. Ono. “New N-way hybrid power dividers,” IEEE Trans. Microw. Theory Tech., vol. MTT-25, no. 12, pp. 1008–1012, Dec. 1977. [30] W. Yau, J. M. Schellenberg, and Y. C. Shih, “A new N-way broadband planar power combiner/divider,” in IEEE MTT-S Int. Microw. Symp. Dig., June 1986, pp. 147–149. [31] H. Kobeissi and K. Wu, “Design technique and performance assessment of new multiport multihole power divider suitable for M(H)MICs,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 4, pp. 499–505, Apr. 2006. [32] L. Li and K. Wu, “Integrated planar spatial power combiner,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1470–1476, Apr. 2006. [33] H. Jin and G. Wen, “A novel four-way Ka-band spatial power combiner based on HMSIW,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 515–517, Aug. 2008. [34] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509–514, Jan.–Feb. 1968 (originally in: Usp. Fiz. Nauk, vol. 92, p. 517, 1967). [35] A. A. Oliner, “A periodic-structure negative-refractive-index medium without resonant elements,” in IEEE AP-S Int. Microw. Symp. Dig., June 2002, pp. 16–21. [36] N. Engheta and R. W. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1535–1556, Apr. 2005. [37] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2075–2084, Nov. 1999. [38] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, pp. 4184–4187, May 2000. [39] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter, vol. 10, no. 22, pp. 4785–4809, June 1998. [40] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, Apr. 2001. [41] A. K. Iyer and G. V. Eleftheriades, “Negative refractive index metamaterials supporting 2-D waves,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2002, pp. 1067–1070. [42] C. Caloz and T. Ioth, “Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip “LH line”,” in IEEE AP-S Int. Microw. Symp. Dig., June 2002, pp. 412–415. [43] G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2702–2712, Dec. 2002. [44] A. Sanada, C. Caloz, and T. Ioth, “Planar distributed structures with negative refractive index,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1252–1263, Apr. 2004. [45] W. Y. Wu, A. Lai, C. W. Kuo, K. M. K. H. Leong, and T. Ioth, “Efficient FDTD method for analysis of mushroom-structure based left-handed materials,” IET Microw. Antennas Propag., vol. 1, no. 1, pp. 100–107, Feb. 2007. [46] R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, D. C. Vier, S. Schultz, D. R. Smith, and D. Schurig, “Microwave focusing and beam collimation using negative index of refraction lenses,” IET Microw. Antennas Propag., vol. 1, no. 1, pp. 108–115, Feb. 2007. [47] M. N. Cia, M. Beruete, I. Campillo, and M. S. Ayza, “Beamforming by left-handed extraordinary transmission metamaterial bi- and plano-concave lens at millimeter-waves,” IEEE Trans. Antennas Propag., vol. 59, no. 6, pp. 2141–2151, June 2011. [48] K. W. Eccleston, “Investigation of a tessellated meta-material planar circuit,” in Proc. Asia-Pacific Microw. Conf. Dig., Dec. 2006, pp. 927–930. [49] K. W. Eccleston and J. Zong, “Implementation of a microstrip square planar N-way metamaterial power divider,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 189–195, Jan. 2009. [50] W. C. Lee and T. H. Chu, “Implementation and measurement of a microstrip square planar 36-way metamaterial power divider,” in IEEE AP-S Int. Symp. Dig., July 2010. [51] W. C. Lee and T. H. Chu, “Implementation and measurement of a microstrip square planar 36-way metamaterial divider,” in 2010 National Symposium on Telecommunications, Dec. 2010. [52] K. W. Eccleston, “Planar N-way metamaterial power divider,” in Proc. Asia-Pacific Microw. Conf. Dig., Dec. 2009, pp.1024–1027. [53] K. W. Eccleston, “Beam forming transition based upon a zero-phase-shift metamaterial,” IET Microw. Antennas Propag., vol. 4, no. 10, pp. 1639–1646, Oct. 2010. [54] W. C. Lee and T. H. Chu, “Design and measurement of a planar 9-way metamaterial power divider,” in 2011 National Symposium on Telecommunications, Nov. 2011. [55] W. C. Lee and T. H. Chu, “Design and measurement of a planar 9-way metamaterial power divider,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2012. [56] W. C. Lee and T. H. Chu, “A planar 9-way metamaterial power divider/combiner,” in 2012 National Symposium on Telecommunications, Nov. 2012. [57] W. C. Lee and T. H. Chu, “Design and power performance measurement of a planar metamaterial power-combined amplifier,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 6, pp. 2414–2424, June 2013. [58] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005. [59] Advanced Design System (ADS), Agilent Technol., Palo Alto, CA, 2008. [60] W. C. Lee and T. H. Chu, “An active lens realized by planar distributed metamaterials,” in IEEE AP-S Int. Symp. Dig., July 2008. [61] W. C. Lee and T. H. Chu, “Analysis and design of an active lens implemented by planar distributed metamaterials,” in Proc. Asia-Pacific Microw. Conf. Dig., Dec. 2008. [62] W. C. Lee and T. H. Chu, “Design and measurement of an active lens implemented by planar distributed negative refraction index materials,” in 2008 National Symposium on Telecommunications, Dec. 2008. [63] W. C. Lee and T. H. Chu, “Loss compensation of a passive metamaterial lens using an injection-locked oscillator,” in Proc. European Microw. Conf. Dig., Sep. 2009, pp. 618–621. [64] W. C. Lee and T. H. Chu, “Loss compensation of a negative refractive index lens using an injection-locked oscillator,” in 2009 National Symposium on Telecommunications, Dec. 2009. [65] Y. Tajima and K. Mishima, “Transmission-type injection locking of GaAs Schottky-barrier FET oscillators,” IEEE Trans. Microw. Theory Tech., vol. MTT-27, no. 5, pp. 386–391, May 1979. [66] G. Gonzalez and O. J. Sosa, “The design of a series-feedback network in a transistor negative-resistance oscillator,” IEEE Trans. Microw. Theory Tech., vol. MTT-47, no. 1, pp. 42–47, Jan. 1999. [67] A. Lai, W. Y. Wu, K. M. K. H. Leong, T. Itoh, and C. Caloz, “Quasi-optical manipulation of microwaves using metamaterial interfaces,” in IEEE AP-S Int. Symp. Dig., July 2005, pp. 273–276. [68] E. Hecht, Optics, 3rd ed. Massachusetts: Addison-Wesley, 1998. [69] J. Kim and M. Swaminathan, “Modeling of irregular shaped power distribution planes using transmission matrix method,” IEEE Trans. Adv. Packag., vol. 24, no. 3, pp. 334–346, Aug. 2001. [70] H. Lee, K. Choi, K. L. Jang, T. Cho, and S. Oh, “A new efficient equivalent circuit extraction method for multi-port high speed package using multi-input multi-output transmission matrix and polynomial curve fitting,” in Proc. 53rd Electron. Compon. Tech. Conf. Dig., May 2003, pp. 1582–1588. [71] P. Jia, L. Y. Chen, N. S. Cheng, and R. A. York, “Design of waveguide finline arrays for spatial power combining,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 4, pp. 609–614, Apr. 2001. [72] H. Kagan, “N-way power divider,” IRE Trans. Microw. Theory Tech., vol. MTT-9, no. 2, pp. 198–199, Mar. 1961. [73] R. L. Ernst, R. L. Camisa, and A. Presser, “Graceful degradation properties of matched N-port power amplifier combiners,” in IEEE MTT-S Int. Microw. Symp. Dig., June 1977, pp. 174–177. [74] Z. Galani, J. L. Lampen, and S. J. Temple, “Single-frequency analysis of radial and planar amplifier combiner circuits,” IEEE Trans. Microw. Theory Tech., vol. MTT-29, no. 7, pp. 642–654, July 1981. [75] D. B. Rutledge, N. S. Cheng, R. A. York, R. M. Weikle II, and M. P. De Lisio, “Failures in power-combining arrays,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1077–1082, Jul. 1999. [76] M. Durán-Sindreu, G. Sisó, J. Bonache, and F. Martín, “Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3882–3891, Dec. 2010. [77] Visual Engineering Environment (VEE) Pro 8.5, Agilent Technol., Palo Alto, CA, 2007. [78] MATLAB 7.8 (R2009a), The Mathworks, 2009. [79] A. Grbic and G. V. Eleftheriades, “Periodic analysis of a 2-D negative refractive index transmission line structure,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2604–2611, Oct. 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17408 | - |
| dc.description.abstract | N路功率分配/整合器為了達到低損失的特性,其電路結構普遍使用非直線排列之多埠,使得主動元件的整合於平面電路上極具困難性。本論文旨在提出使用超穎材料設計新型平面式功率分配/整合器,並整合微波功率放大器,研製新型微波平面功率整合放大器,內容理論與實驗並重。
此功率分配/整合器以超穎材料實現之微波透鏡為基礎架構,並由右手單元構成的正折射率材料及左手單元構成的零折射率材料所組成,正折射率與零折射率材料的界面則使用半圓形曲面。功率分配/整合器的輸入埠及輸出埠在正折射率材料內,分別位於零折射率材料製成之雙凹透鏡的兩個焦點上。當電磁波於零折射率材料內傳播,波長因係無窮大,使其呈現等大小及等相位的分佈,藉由此特性,適當地連接共線性排列的放大器,進而設計平面功率整合放大器。 首先,第二章敘述右手單元和左手單元的結構及公式推導,以及設計一正折射率/負折射率/正折射率夾層結構,並分別於焦點上放置一放大器及振盪器,以有效加強顯示電磁波於超穎材料內波前反向及聚焦現象。第三章則敘述新型平面九路功率分配/整合器之結構及電路分析,其中於電路分析上,使用2N埠傳輸矩陣法來分析此九路結構,求得其解析式,並以實驗驗證。透過電路散射參數量測,顯示此九路功率分配/整合器的整合效率可達到88%,並且經由量測洩漏電場,證實零折射材料的無窮波長現象,功率分配/整合器結構上其電壓分配與整合現象亦清楚顯見,量測結果與理論相吻合。 最後,第四章則進一步敘述新型平面九路功率整合放大器,使用第三章所提出之功率分配/整合器架構整合九只1 W放大器,此九路功率整合放大器操作於頻率1.008 GHz。功率量測結果顯示其輸出功率為7.64 W,整合效率為85%,並且透過量測洩漏電場,進一步驗證電壓分配與整合現象,量測結果與理論相吻合。此九路功率整合放大器之優雅遞減的特性,亦透過散射參數、功率、以及洩漏電場的量測所驗證。 | zh_TW |
| dc.description.abstract | The problem of noncollinearly aligned ports in N-way power divider/combiners makes their integration with active devices in a planar structure difficult. This dissertation develops a novel planar metamaterial power-dividing/combining structure with the integration of power amplifiers (PAs) as a power-combined amplifier for PA application. Both the theoretical analysis and the experimental implement are emphasized.
The presented planar power divider/combiner is based on the metamaterial lens structure. Specifically, it is composed of positive refractive index (PRI) material with right-handed (RH) unit cells and zero refractive index (ZRI) material with left-handed (LH) unit cells. A semi-circular interface is between PRI and ZRI materials. The input and output ports are within the PRI materials and at the two focal points of a double-concave ZRI lens. The infinite wavelength phenomenon in the ZRI material attains an equal magnitude and phase distribution to have an interconnection with the collinearly aligned amplifiers as a planar power-combined amplifier. Firstly, Chapter 2 describes the basic design principle of RH and LH unit cells and a planar PRI-NRI-PRI slab. Two planar PRI-NRI-PRI slab structures embedded with an amplifier and an oscillator, respectively, to effectively enhance the wavefront reversal and focusing phenomenon are presented and experimentally verified. Chapter 3 presents a novel planar nine-way metamaterial power divider/combiner, along with its design principle and circuit analysis. A 2N-port transmission matrix approach is used to analyze this nine-way power-divider/combiner structure and derive the analytical formulation. Through the circuit scattering-parameter (S-parameter) measurement, the nine-way power divider/combiner shows an average combining efficiency of 88%. Through the field measurement to each cell, it not only demonstrates the infinite wavelength phenomenon of the ZRI material, but also clearly indicates the dividing/combining phenomenon within the power-divider/combiner circuit. Measured results are shown in good agreements with analytical results. Finally, Chapter 4 presents a novel planar nine-way power-combined amplifier based on the metamaterial power-dividing/combining structure in Chapter 3. The power combining of nine 1-W amplifiers gives an output power of 7.64 W with a combining efficiency of 85% at 1.008 GHz. The dividing/combining phenomenon is further demonstrated via the field measurement to each cell of the power divider/combiner and is shown in good agreement with analytical results. Furthermore, the graceful degradation characteristic of this power-combined amplifier is experimentally demonstrated through S-parameter, power, and field measurements. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:11:17Z (GMT). No. of bitstreams: 1 ntu-102-D95942009-1.pdf: 4557793 bytes, checksum: b2fe76dfc6c91fc2a98d2eb682c2f9f7 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝..............................i
摘要..............................iii ABSTRACT...........................v CONTENTS ..........................vii CHAPTER 1 INTRODUCTION 1 1.1 Research Motivation ......................1 1.2 Literature Review .......................3 1.2.1 Planar N-Way Power Dividers.................. 3 1.2.2 Metamaterials........................ 4 1.2.3 Metamaterial Power Dividers.................. 6 1.3 Contributions ......................... 7 1.4 Chapter Outlines ........................8 CHAPTER 2 METAMATERIAL SLAB 10 2.1 Design Principle ....................... 11 2.1.1 LH and RH Unit Cells.....................11 2.1.2 PRI-NRI-PRI Slab...................... 16 2.2 Simulation Results.......................18 2.3 Experimental Verification ....................21 2.3.1 Circuit Implementation ....................21 2.3.2 Results ..........................21 2.4 PRI-NRI-PRI Slab with an Embedded Amplifier..........23 2.4.1 Amplifier Design.......................25 2.4.2 Circuit Implementation ....................25 2.4.3 Results ..........................27 2.5 PRI-NRI-PRI Slab with an Embedded Oscillator ...........31 2.5.1 Oscillator Design ......................31 2.5.2 Circuit Implementation ....................33 2.5.3 Results ..........................35 2.6 Summary ..........................37 CHAPTER 3 METAMATERIAL NINE-WAY POWER DIVIDER/ COMBINER 39 3.1 Design Principle........................40 3.1.1 Metamaterial Lens ......................40 3.1.2 Nine-Way Power Divider/Combiner ...............42 3.2 Formulation .........................47 3.2.1 S-Parameter ........................ 47 3.2.2 Voltage and Current ..................... 54 3.3 Experimental Verification ....................59 3.3.1 Nine-Way Power Divider/Combiner ...............59 3.3.2 Nine-Way Power Divider....................66 3.4 Discussion..........................71 3.5 Summary.......................... 73 CHAPTER 4 METAMATERIAL NINE-WAY POWER-COMBINED AMPLIFIER 75 4.1 Design and Formulation.....................76 4.1.1 Nine-Way Power-Combined Amplifier .............. 76 4.1.2 Amplifier..........................77 4.1.3 Formulation.........................80 4.2 Circuit Implementation..................... 82 4.3 Results........................... 82 4.3.1 S-Parameter Measurement..... ..............82 4.3.2 Power Measurement ..................... 85 4.3.3 Field Measurement......................86 4.3.4 Graceful Degradation Measurement..............91 4.4 Summary ..........................95 CHAPTER 5 CONCLUSIONS 104 5.1 Summary ..........................104 5.2 Future Work ........................ 107 APPENDICES 109 A. Derivation of (2.11) and (2.12) by 2-D analysis ...109 B. Simulated results of the PRI-NRI-PRI slab terminated by open circuits...112 C. Agilent VEE programming..............115 D. Simulated results of the different ZoL and ZoR values .........119 E. Simulated results of the nine-way power-divider/combiner circuit terminated by short circuits and resistors...121 F. Derivation of transmission and isolation coefficients of a lossless and input-port matched N-way power divider..125 REFERENCES 127 | |
| dc.language.iso | en | |
| dc.title | 使用超穎材料之微波平面功率整合放大器 | zh_TW |
| dc.title | A Metamaterial Microwave Planar Power-Combined Amplifier | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王暉(Huei Wang),毛紹綱(Shau-Gang Mao),鍾世忠(Shyh-Jong Chung),黃建彰(Chien-Chang Huang),曾昭雄(Chao-Hsiung Tseng) | |
| dc.subject.keyword | 超穎材料,微波電路,功率分配器,功率整合器,功率放大器,散射參數, | zh_TW |
| dc.subject.keyword | metamaterial,microwave circuit,power divider,power combiner,power amplifier,scattering parameter, | en |
| dc.relation.page | 136 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
