請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17406完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉宏輝(Horng-Huei Liou) | |
| dc.contributor.author | Hsing-Yu Lin | en |
| dc.contributor.author | 林杏諭 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:11:10Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-06 | |
| dc.identifier.citation | Identification and Characterization of Neural Progenitor Cells in the Adult Mammalian Brain Series: Advances in Anatomy, Embryology and Cell Biology, Vol. 203
Ahmed, S. (2009). 'The culture of neural stem cells.' J Cell Biochem 106(1): 1-6. Bagri, A., T. Gurney, et al. (2002). 'The chemokine SDF1 regulates migration of dentate granule cells.' Development 129: 4249-4260. Bagri, A., T. Gurney, et al. (2002). 'The chemokine SDF1 regulates migration of dentate granule cells.' Development 129: 4249-4260. Bai, Y., M. Cui, et al. (2009). 'Ectopic expression of angiopoietin-1 promotes neuronal differentiation in neural progenitor cells through the Akt pathway.' Biochem Biophys Res Commun 378(2): 296-301. Bajetto, A., S. Barbero, et al. (2001). 'Stromal cell-derived factor-1alpha induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1 2 pathway.' Journal of Neurochemistry 77: 1226-1236. Ballas, N., C. Grunseich, et al. (2005). 'REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis.' Cell 121(4): 645-657. Barkho, B. Z., A. E. Munoz, et al. (2008). 'Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines.' Stem Cells 26(12): 3139-3149. Bez, A., E. Corsini, et al. (2003). 'Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization.' Brain Res 993(1-2): 18-29. Bischofberger, J. (2007). 'Young and excitable new neurons in memory networks.' Nat Neurosci 10(3): 273-275. Broxmeyer, H. E., C. M. Orschell, et al. (2005). 'Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist.' J Exp Med 201(8): 1307-1318. Bylund, M., E. Andersson, et al. (2003). 'Vertebrate neurogenesis is counteracted by Sox1-3 activity.' Nat Neurosci 6(11): 1162-1168. Carbajal, K. S., C. Schaumburg, et al. (2010). 'Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis.' Proc Natl Acad Sci U S A 107(24): 11068–11073. Ceradini, D. J., A. R. Kulkarni, et al. (2004). 'Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1.' Nat Med 10(8): 858-864. Chong, J. A., J. Tapia-Ramirez, et al. (1995). 'REST A mammalian silencer protein that restricts sodium channel gene expression to neurons.' Cell 80: 949-957. Dai, N. and V. Sottile (2008). '<Neural Stem Cell Approaches to CNS Repair.pdf>.' Electronic Journal of Biology 4(2): 79-87. Doitsidou, M., M. Reichman-Fried, et al. (2002). 'Guidance of Primordial Germ Cell Migration by the Chemokine SDF-1.' Cell 111: 647–659. Dziembowska, M., T. N. Tham, et al. (2005). 'A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors.' Glia 50(3): 258-269. Faigle, R. and H. Song (2013). 'Signaling mechanisms regulating adult neural stem cells and neurogenesis.' Biochim Biophys Acta 1830(2): 2435-2448. Felling, R. J., M. J. Snyder, et al. (2006). 'Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia.' J Neurosci 26(16): 4359-4369. Fong, A. M., R. T. Premont, et al. (2002). 'Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice.' Proc Natl Acad Sci U S A 99(11): 7478-7483. Gage, F. H. (2000). 'Mammalian Neural Stem Cells.' Science 287(5457): 1433-1438. Gal, J. S., Y. M. Morozov, et al. (2006). 'Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones.' J Neurosci 26(3): 1045-1056. Galli, R., A. Gritti, et al. (2003). 'Neural stem cells: an overview.' Circ Res 92(6): 598-608. Gao, Z., K. Ure, et al. (2011). 'The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells.' J Neurosci 31(26): 9772-9786. Gong, X., X. He, et al. (2006). 'Stromal cell derived factor-1 acutely promotes neural progenitor cell proliferation in vitro by a mechanism involving the ERK1/2 and PI-3K signal pathways.' Cell Biol Int 30(5): 466-471. Green, H. F., E. Treacy, et al. (2012). 'A role for interleukin-1beta in determining the lineage fate of embryonic rat hippocampal neural precursor cells.' Mol Cell Neurosci 49(3): 311-321. Han, J., B. Wang, et al. (2008). 'Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin.' Mol Cell Neurosci 39(1): 118-124. Han, Y., T. He, et al. (2001). 'TNF-α mediates SDF-1α–induced NF-κB activation and cytotoxic effects in primary astrocytes.' Journal of Clinical Investigation 108(3): 425-435. Hatakeyama, J., Y. Bessho, et al. (2004). 'Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation.' Development 131(22): 5539-5550. Hayon, Y., O. Dashevsky, et al. (2012). 'Platelet microparticles promote neural stem cell proliferation, survival and differentiation.' J Mol Neurosci 47(3): 659-665. Imitola, J., K. Raddassi, et al. (2004). 'Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway.' Proc Natl Acad Sci U S A 101(52): 18117-18122. Ishibashi, M., S. L. Ang, et al. (1995). 'Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects.' Genes & Development 9(24): 3136-3148. Jensen, J. B. and M. Parmar (2006). 'Strengths and Limitations of the Neurosphere Culture System.' Molecular Neurobiology. Kempermann, G., H. G. Kuhn, et al. (1998). 'Experience-induced neurogenesis in the senescent dentate gyrus.' The Journal of Neuroscience 18(9): 3206–3212. Khoshnan, A. and P. H. Patterson (2012). 'Elevated IKKalpha accelerates the differentiation of human neuronal progenitor cells and induces MeCP2-dependent BDNF expression.' PLoS One 7(7): e41794. Kim, C. H. and H. E. Broxmeyer (1998). ' In Vitro Behavior of Hematopoietic Progenitor Cells Under the Influence of Chemoattractants:Stromal Cell-Derived Factor-1, Steel Factor, and the Bone Marrow Environment ' Blood 91(1): 100-110. Kim, M. Y., S. Kaduwal, et al. (2010). 'Bone morphogenetic protein 4 stimulates attachment of neurospheres and astrogenesis of neural stem cells in neurospheres via phosphatidylinositol 3 kinase-mediated upregulation of N-cadherin.' Neuroscience 170(1): 8-15. Krathwohl, M. D. and J. L. Kaiser (2004). 'Chemokines Promote Quiescence and Survival of Human Neural Progenitor Cells.' Stem Cells 22: 109-118 Lazarini, F., T. N. Tham, et al. (2003). 'Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system.' Glia 42(2): 139-148. Lee, J. K., H. K. Jin, et al. (2010). 'Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses.' Stem Cells 28(2): 329-343. Li, M., C. J. Chang, et al. (2011). 'Chemokine receptor CXCR4 signaling modulates the growth factor-induced cell cycle of self-renewing and multipotent neural progenitor cells.' Glia 59(1): 108-118. Li, M. and R. M. Ransohoff (2008). 'Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology.' Prog Neurobiol 84(2): 116-131. Liang, H, Y Yin, et al. (2013). 'Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage.' Mol Cells.36(1): 17-21 Lim, M. S., S. H. Nam, et al. (2007). 'Signaling pathways of the early differentiation of neural stem cells by neurotrophin-3.' Biochem Biophys Res Commun 357(4): 903-909. Liu, X. S., M. Chopp, et al. (2008). 'Functional response to SDF1 alpha through over-expression of CXCR4 on adult subventricular zone progenitor cells.' Brain Res 1226: 18-26. Lu, M., E. A. Grove, et al. (2002). 'Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor.' Proc Natl Acad Sci U S A 99(10): 7090-7095. Lukaszewicz, A. I. and D. J. Anderson (2011). 'Cyclin D1 promotes neurogenesis in the developing spinal cord in a cell cycle-independent manner.' Proc Natl Acad Sci U S A 108(28): 11632–11637. Ma, J., Z. Yu, et al. (2010). 'Proliferation and differentiation of neural stem cells are selectively regulated by knockout of cyclin D1.' J Mol Neurosci 42(1): 35-43. Marampon, F., M. C. Casimiro, et al. (2008). 'Nerve Growth factor regulation of cyclin D1 in PC12 cells through a p21RAS extracellular signal-regulated kinase pathway requires cooperative interactions between Sp1 and nuclear factor-kappaB.' Mol Biol Cell 19(6): 2566-2578. Melchers, F., A. G. Rolink, et al. (1999). 'The Role of Chemokines in Regulating Cell Migration during Humoral Immune Responses.' Cell 99: 351–354. Melchers, F., A. G. Rolink, et al. (1999). 'The role of chemokines in regulating cell migration during humoral immune responses.' Cell 99: 351–354. Murdoch, C. and A. Finn (2000). 'Chemokine receptors and their role in inflammation and infectious diseases.' Blood 95: 3032-3043. Murdoch, C. and A. Finn (2000). 'Chemokine receptors and their role in inflammation and infectious diseases.' Blood 95(10): 3032-3043. Nait-Oumesmar, B., N. Picard-Riera, et al. (2007). 'Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors.' Proc Natl Acad Sci U S A 104(11): 4694-4699. Nogueira, L., P. Ruiz-Ontanon, et al. (2011). 'Blockade of the NFkappaB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo.' Oncogene 30(32): 3537-3548. Oberlin, E. and A. Amara (1996). 'The CXC chemokine SDF-1 is the ligand for LESTR fusin and prevents infection by T-cell-line-adapted HIV-1.' Nature 382(29): 833-835. Ohtsuka, T., M. Ishibashi, et al. (1999). 'Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation.' The EMBO Journal 18(8): 2196–2207. Parent, J. M., T. W. Yu, et al. (1997). 'Dentate Granule Cell Neurogenesis Is Increased by Seizures and Contributes to Aberrant Network Reorganization in the Adult Rat Hippocampus.' The Journal of Neuroscience 17(10): 3727–3738. Pastrana, E., V. Silva-Vargas, et al. (2011). 'Eyes wide open: a critical review of sphere-formation as an assay for stem cells.' Cell Stem Cell 8(5): 486-498. Peng, H., R. Kolb, et al. (2007). 'Differential Expression of CXCL12 and CXCR4 During Human Fetal Neural Progenitor Cell Differentiation.' J Neuroimmune Pharmacol. 2(3): 251–258. Potten, C. S. and M. Loeffler (1990). 'Stem cells attributes, cycles, spirals, pitfalls and uncertainties Lessons for and from the crypt.' Development 110: 1001-1102. Povsic, T. J., T. A. Kohout, et al. (2003). 'Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis.' J Biol Chem 278(51): 51334-51339. Rivest, S. (2003). 'Molecular insights on the cerebral innate immune system.' Brain, Behavior, and Immunity 17: 13–19. Rossi, D. and A. Zlotnik (2000). 'The biology of chemokines and their receptors.' Annu. Rev. Immunol. 18: 217–242. Rot, A. and U. H. von Andrian (2004). 'Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells.' Annu Rev Immunol 22: 891-928. Sanberg, P. R. (2007). 'Neural stem cells for Parkinson's disease: to protect and repair.' Proc Natl Acad Sci U S A 104(29): 11869-11870. Santarelli, L., M. Saxe, et al. (2003). 'Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.' Science 301(5634): 805-809. Sehgal, A., C. Keener, et al. (1998). 'CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells.' Journal of Surgical Oncology: 99–104. Sheng, X., M. Li, et al. (2012). 'Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicus promotes neurosphere migration and differentiation via up-regulation of N-cadherin.' Cell Mol Neurobiol 32(3): 435-442. Soldati, C., A. Bithell, et al. (2012). 'Repressor element 1 silencing transcription factor couples loss of pluripotency with neural induction and neural differentiation.' Stem Cells 30(3): 425-434. Son, B.-R., L. A. Marquez-Curtis, et al. (2006). 'Migration of Bone Marrow and Cord Blood Mesenchymal Stem Cells In Vitro Is Regulated by Stromal-Derived Factor-1-CXCR4 and Hepatocyte Growth Factor-c-met Axes and Involves Matrix Metalloproteinases.' Stem Cells 24: 1254-1264. Sun, Y., Z. Cheng, et al. (2002). 'Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation.' J Biol Chem 277(51): 49212-49219. Supeno, N. E., S. Pati, et al. (2013). 'IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells.' Int J Med Sci 10(5): 522-531. Tavor, S., M. Eisenbach, et al. (2008). 'The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation.' Leukemia 22(12): 2151-5158. Teixeira, C. M., M. M. Kron, et al. (2012). 'Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus.' J Neurosci 32(35): 12051-12065. Tran, P. B., G. Banisadr, et al. (2007). 'Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain.' J Comp Neurol 500(6): 1007-1033. Tran, P. B. and R. J. Miller (2003). 'Chemokine receptors: signposts to brain development and disease.' Nat Rev Neurosci 4(6): 444-455. Tran, P. B., D. Ren, et al. (2004). 'Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells.' J Neurosci Res 76(1): 20-34. Tricot, G., M. H. Cottler-Fox, et al. (2010). 'Safety and efficacy assessment of plerixafor in patients with multiple myeloma proven or predicted to be poor mobilizers, including assessment of tumor cell mobilization.' Bone Marrow Transplant 45(1): 63-68. Ullmannová, V., P. Stöckbauer, et al. (2003). 'Relationship between cyclin D1 and p21Waf1/Cip1 during differentiation of human myeloid leukemia cell lines.' Leukemia Research 27(12): 1115-1123. Vilz, T. O., B. Moepps, et al. (2005). 'The SDF-1/CXCR4 pathway and the development of the cerebellar system.' Eur J Neurosci 22(8): 1831-1839. Wang, L., Z. G. Zhang, et al. (2007). 'The Sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells.' J Biol Chem 282(44): 32462-32470. Woerner, B. M., N. M. Warrington, et al. (2005). 'Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies.' Cancer Res 65(24): 11392-11399. Wu, Y., H. Peng, et al. (2009). 'CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway.' J Neurochem 109(4): 1157-1167. Zlotnik, A. and O. Yoshie (2000). 'Chemokines: A New Classification System and Their Role in Immunity.' Immunity 12: 121–127. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17406 | - |
| dc.description.abstract | 背景:神經幹細胞(NSC)是一種具備新生與分化能力的細胞,可以進行細胞再生甚至組織再造,所以神經幹細胞的生長與分化是神經新生的重要關鍵,因此常被視為細胞治療的重要來源。近年來發現許多腦部發炎性疾病中,體內Stromal derived factor-1 (SDF-1)會被大量增加,並且同時出現大量神經幹細胞的新生與遷移。因此SDF-1極為可能是神經新生驅動活化的重要因子。
目標: 探討SDF- 1對小鼠神經幹細胞之特性維持與生長分化能力的影響以及其相關機轉的研究 研究方法:本篇論文利用體外培養小鼠初代神經幹細胞球,使用CXCR4拮抗劑, AMD3100競爭阻斷SDF-1活化神經幹細胞中CXCR4的訊息路徑。並且藉由分析形成之神經幹細胞球數量大小、形態特徵及細胞特性來評估缺少SDF-1作用時對於神經幹細胞球所造成之影響 結果:我們成功的從小鼠大腦組織培養出神經幹細胞並且藉由給予AMD3100阻斷神經幹細胞中SDF-1/CXCR4的訊息傳遞。研究結果發現AMD3100不會造成細胞死亡也不會影響神經幹細胞球之形成比率。但是AMD3100會顯著降低神經幹細胞球之平均大小,而且與劑量呈現正相關(控制組為1818.07±84.9 pixel2;AMD3100 0.1μg/ml為1411.01±107.7 pixel2;AMD3100 0.5μg/ml為906.20±97.8 pixel2;AMD3100 1.0μg/ml為626.60±66.3 pixel2)。同時也發現AMD3100會明顯減少神經幹細胞球中表現Ki67之細胞比例(控制組為52.25±8.45%;而AMD3100 1.0μg/ml為32.67±3.82%),表示當神經幹細胞之CXCR4訊息路徑受阻斷時可能會因此抑制其增殖能力。此外,從流式細胞分析結果顯示AMD3100阻斷CXCR4後會降低神經幹細胞球中表現nestin之神經幹細胞比例(控制組為96.87±0.7%;AMD3100 1.0 μg/ml為90.6±2.6%),但是會增加表現β III tubulin之神經細胞比例(控制組為52±1.4%;AMD3100 1.0 μg/ml為67.7±5.1%),表示CXCR4訊息路徑的阻斷可能會因此導致神經幹細胞趨向神經分化而降低神經幹細胞之特性。西方墨漬法結果發現受到AMD3100作用後的神經幹細胞球,其REST和Notch的表現量明顯減低,表示神經幹細胞特性可能發生變化且趨向神經分化。同時也發現神經幹細胞球之pAkt和pS6蛋白表現量有顯著增加,因此推測Akt-mTOR訊息路徑可能是AMD3100影響神經幹細胞之增殖與分化活性的可能路徑。此外,增殖時期受AMD3100影響過之神經幹細胞球在誘發分化後,其分化神經的軸突長度較長(控制組為153.21±88.3μm;AMD3100 1.0 μg/ml 385.93±47.6 μm)和分支程度也會增加(控制組為1.08±0.12級;AMD3100 1.0 μg/ml為2.12±0.17級),表示AMD3100可能潛在具備促進新生神經成熟的作用。另一方面,也發現神經幹細胞在增殖時期缺少SDF-1作用不僅會改變細胞增殖活性,也可能因此影響神經幹細胞球最終分化細胞之蛋白表現。 結論:本篇論文結果發現,當SDF-1/CXCR4訊息功能受到AMD3100的阻斷時,神經幹細胞之特性會降低並且促使神經幹細胞趨向神經分化,而這其中Akt-mTOR之訊息傳遞路徑可能參與其中。這代表SDF-1/CXCR4訊息路徑對神經幹細胞之特性維持可能扮演著十分重要的角色,也可能成為未來誘導神經幹細胞特性的重要標的。 | zh_TW |
| dc.description.abstract | Background:Neural stem cell (NSC) is a kind of cell has the ability for self-renewal and differentiation. Due to NSC is able to generate new-born cells and repopulate tissues, so the growth and development of NSC is the key of the neurogenesis. Thus, NSCs have been considered as an attractive source of cell-based therapy. Recently, it’s been reported that neuronal generation and migration occurred with a burst of SDF-1 elevation. Therefore, SDF-1 probably is the main regulator of driving neurogenesis.
Aim : To study the effects of SDF-1on NSC maintenance and its develo[1]ping ability and to further investigate their related mechanisms Methods : In this thesis, using CXCR4 antagonist, AMD3100 blocked the activation of CXCR4 signaling pathway by SDF-1 in the mice primary neurosphere culture. We analyzed the size and population of neurospheres, cell morphologic features, and cell expression markers to investigate the effects on neurospheres without SDF-1. Results : We successfully cultured primary neural stem cells to form neurospheres from postnatal mice brain and blocked the SDF-1/CXCR4 signaling pathway by AMD3100. We found that CXCR4 blockage by AMD3100 had no effects on the cell death and the neurosphere formation. However, AMD3100 significantly reduced the mean size of neurospheres, and it’s in a dose-dependent manner. (Control:1818.07±84.9 pixel2, AMD3100 0.1μg/ml : 1411.01±107.7 pixel2, AMD3100 0.5μg/ml : 906.20±97.8 pixel2, AMD3100 1.0μg/ml : 626.60±66.3 pixel2). We also found that AMD3100 decreased the expression percentage of Ki67-positive cells (Control:52.25±8.45%, AMD3100 1.0μg/ml: 32.67±3.82%). It indicated that CXCR4 signaling blockage inhibited NSC proliferation. Moreover, the results from flow cytometry analysis showed that blocking CXCR4 signaling in NSCs by AMD3100 decreased the percentage of nestin-positive cells (Control : 96.87±0.7%, AMD3100 1.0 μg/ml : 90.6±2.6%); nevertheless, increased the percentage of β III tubulin-positive cells (Control : 52±1.4%, AMD3100 1.0 μg/ml : 67.7±5.1%). It suggested that CXCR4 signaling blockage might promote NSC differentiation and result in the reduction of NSC property. Western blot showed that both REST and Notch expression level were decreased in AMD3100-treated neurosphere, and it represented the character of NSCs were probably changed and prompted to neuronal differentiation. Meanwhile, the pAkt and pS6 activity were significantly elevated, and it’s suggested that the induction of neuronal differentiation by AMD3100 was possibly through Akt-mTOR signaling activation. Besides, after induced neurosphere differentiation, the neurites length and branching level of those differentiated neurons from AMD3100 treatment may significantly increase (Control : 153.21±88.3μm, AMD3100 1.0 μg/ml : 385.93±47.6 μm) (Control : 1.08±0.12 level, AMD3100 1.0 μg/ml : 2.12±0.17 level). It indicated that AMD3100 have a potential ability to promote NSC maturation. On the other hand, loss of SDF-1 function at the proliferation stage of NSC might reduce NSCs proliferation abilities, and ultimately decreased the protein levels of differentiated neurons after induced differentiation. Conclusions : Our results showed that AMD3100 once blocking the SDF-1/CXCR4 signaling pathway, Akt-mTOR signaling pathway might involve in the decrease of NSC property and the increase in NSC differentiation. It indicated that SDF-1/CXCR4 signaling is quite important for NSC maintenance, and it could be a great target for induced NSCs in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:11:10Z (GMT). No. of bitstreams: 1 ntu-102-R00443005-1.pdf: 3281616 bytes, checksum: f2efa08f81fe8f5eb2a0fb0c6da452f0 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 圖目錄 viii 表目錄 x 縮寫表 xi 第一章 緒論(Introduction) 1 第一節 神經新生 1 第二節 神經新生與細胞治療契機 1 第三節 神經幹細胞與神經新生 2 第四節 神經幹細胞和前驅細胞與神經幹細胞球 3 第五節 SDF-1/CXCR4路徑與神經新生 5 第六節 SDF-1/CXCR4之訊息路徑 7 第七節 CXCR4之專一性拮抗劑:AMD3100 (plerixafor) 8 第八節 NSC和NPC中CXCL12-CXCR4之調控角色 8 第九節 研究動機與目的 9 第二章 實驗材料與方法(Materials and Methods) 11 第一節 實驗動物 11 第二節 實驗藥品 11 第三節 細胞培養 11 第四節 神經細胞球形成能力分析 (Neurosphere formation assay) 13 第五節 免疫細胞化學染色法(Immunocytochemistry) 14 第六節 反轉錄酶-聚合酶連鎖反應(reverse transcriptase polymerase chain reaction; RT-PCR) 15 第七節 細胞存活率分析 (WST -8 Assay) 16 第八節 LDH釋放量之測定 (LDH Assay) 17 第九節 西方墨漬法 (Western Blot) 18 第十節 流式細胞儀分析 (Flow cytometry analysis) 21 第十一節 神經軸突結構測量(Morphometric measurements on neurites) 21 第十二節 統計分析 (Statistic analysis) 22 第三章 結果(Results) 23 第一節 體外培養初代神經幹細胞模式 23 第二節 增殖環境下,SDF-1/CXCR4訊息路徑對神經幹細胞生長之影響 25 第三節 SDF-1/CXCR4訊息阻斷會潛在影響神經幹細胞球之特性組成之可能機轉 32 第四節 SDF-1/CXCR4訊息功能抑制可能會促進分化神經細胞之成熟 33 第五節 AMD3100早期阻斷神經幹細胞SDF-1/CXCR4訊息路徑最終可能會造成分化神經的喪失 34 第四章 討論(Discussion) 36 第一節 總述 36 第二節 SDF-1/CXCR4訊息路徑於神經幹細胞增殖與分化能力之角色 36 第三節 SDF-1/CXCR4訊息路徑調控神經幹細胞增殖與分化發展之機轉 38 第四節 SDF-1/CXCR4訊息路徑對細胞分化和遷移之影響 39 第五節 檢討與未來展望 40 參考文獻(References) 76 | |
| dc.language.iso | zh-TW | |
| dc.title | SDF-1調控神經幹細胞之生長及分化機轉之研究 | zh_TW |
| dc.title | Studies on the mechanisms of SDF-1-regulated neural stem cell proliferation and differentiation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林泰元(Thai-Yen Ling) | |
| dc.contributor.oralexamcommittee | 符文美,郭紘志 | |
| dc.subject.keyword | 神經幹細胞,神經新生,SDF-1(Stromal derived factor-1),神經幹細胞球,CXCR4拮抗劑,Akt-mTOR, | zh_TW |
| dc.subject.keyword | NSC,neurogenesis,SDF-1(Stromal derived factor-1),neurosphere,CXCR4 antagonist,Akt-mTOR signaling pathway, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
