Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17383
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor董成淵(Chen-Yuan Dong)
dc.contributor.authorYu-Cheng Hsiaoen
dc.contributor.author蕭宇成zh_TW
dc.date.accessioned2021-06-08T00:09:56Z-
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-08
dc.identifier.citation[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters 58, 2059–2062 (1987).
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters 58, 2486–2489 (1987).
[3] J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Applied Physics Letters 75, 3605 (1999).
[4] J. Y. Ye and M. Ishikawa, “Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration,” Optics Letter 33, 1729–1731 (2008).
[5] I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Applied Physics Letters 94, 231122 (2009).
[6] E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. W.-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[7] N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnology 2, 515–520 (2007).
[8] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[9] M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Mater. 3, 211–219 (2004).
[10] S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[11] F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Letter 7, 496–501 (2007).
[12] Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nature Nanotechnology 4, 571–576 (2009).
[13] K. Konig, B. T. W.ecker, P. Fischer, I. Riemann, K. J. Halbhuber, 'Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,' Optics Letter 24, 113-15 (1999).
[14] Y. R. Shen, The Principles of Nonlinear Optics, (John Wiley & Sons, New York, 1984).
[15] M. J. Steel and C. Martijn de Sterke, “Bragg-assisted parametric amplification of short optical pulses,” Optics Letter 21, 420 (1996).
[16] A. V. Balakin, D. Boucher, V. A. Bushuev, N. I. Koroteev, B. I. Mantsyzov, I. A. Ozheredov, A. P. Shkurinov, D. Boucher, and P. Masselin, “Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light,” Optics Letter 24, 793 (1999).
[17] A. V. Andreev, O. A. Andreeva, A. V. Balakin, D. Boucher, P. Masselin, I. A. Ozheredov, I. R. Prudnikov, and A. P. Shkurinov, “Mechanisms of second-harmonic generation in one-dimensional periodic media,” Quantum Electronics 29, 632 (1999).
[18] A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, P. Masselin, I. A. Ozheredov, A. P. Shkurinov, and D. Boucher, “Amplification of the generation of the sum-frequency signal in multilayer periodic structures at the edges of the Bragg band gap,” Journal of Experimental and Theoretical Physics Letters 70, 725 (1999)
[19] B. J. Eggleton, R. E. Slusher, C. Martijn de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Physics Review Letter 76, 1627 (1996).
[20] B. J. Eggleton, G. Lenz, R. E. Slusher, and N. M. Litchinitser, “Compression of optical pulses spectrally broadened by self-phase modulation with a fiber bragg grating in transmission,” Applied Optics 37, 7055 (1998).
[21] A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Physical Review E 63, 016602 (2000).
[22] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 1995), pp. 2–3 and 44–65.
[23] T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wave -lengths,” Nature 383, 699–702 (1996).
[24] S. Noda, “Three-dimensional photonic crystals operating at optical Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Physical Review Letters 67(17), 2295–2298 (1991).wavelength region,” Phsyca B 279(1-3), 142–149 (2000).
[25] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[26] E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[27] M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal- based beam splitters,” Applied Physics Letters 77, 3902–3904 (2000).
[28] C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdre, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Applied Physics Letters 77, 2813–2815 (2000).
[29] E. Hecht, Optics, 4th ed. (Addison Wesley, San Francisco 2002), pp. 406–407 and 591–594.
[30] B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[31] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, Oxford, 1993), pp. 1–3.
[32] H. Kawamoto, “The history of liquid-crystal displays,” Proceedings of the IEEE 90, 460–500 (2002).
[33] G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals,” Proceedings of the IEEE 56, 1162–1171 (1968).
[34] G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Applied Physics Letters 13, 91–92 (1968).
[35] P. Yeh and C. Gu, Optics of Liquid Crystal Displays, 2nd ed. (Wiley, Hoboken, 2010), pp. 208–215, 210–213, 335–339, 365–388, and 461.
[36] D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, 1st ed. (Wiley, Chichester, 2006), pp. 66–68, 202–204, and 209.
[37] V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Optics Letters 23, 1707–1709 (1998).
[38] A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Optics Letters 26, 804–806 (2001).
[39] M. Ozaki, Y. Matsuhisa, H. Yoshida, R. Ozaki, and A. Fujii “Photonic crystals based on chiral liquid crystal,” Physica Status Solidi 204, 3777–3789 (2007).
[40] K. Yoshino, Y. Ohmori, A. Fujii, and M. Ozaki, “Organic electronic devices based on polymeric material and tunable photonic crystal,” Japanese Journal of Applied Physics 46, 5655–5673 (2007).
[41] T. Matsui, M. Ozaki, and K. Yoshino, “Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix,” Physical Review E 69, 061715-1–4 (2004).
[42] H. Yoshida, C. H. Lee, A. Fujii, and M. Ozaki, “Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modification of helix,” Applied Physics Letters 89, 231913-1–3 (2006).
[43] H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Applied Physics Letters 90, 071107-1–3 (2007).
[44] H. Yoshida, C. H. Lee, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Bottom-up fabrication of photonic defect structures in cholesteric liquid crystals based on laser-assisted modification of the helix,” Advanced Materials 19, 1187–1190 (2007).
[45] H. Yoshida, R. Ozaki, K. Yoshino, and M. Ozaki, “Effect of introducing multiple chiral defects on the optical properties of cholesteric liquid crystals,” Thin Solid Films 509, 197–201 (2006).
[46] R. Ozaki, Y. Matsuhisa, H. Yoshida, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Defect mode in cholesteric liquid crystal consisting of two helicoidal periodicities,” Japanese Journal of Applied Physics 45(1B), 493–496 (2006).
[47] R. Ozaki, Y. Matsuhisa, H. Yoshida, K. Yoshino, and M. Ozaki, “Optical properties and electric field enhancement in cholesteric liquid crystal containing different periodicities,” Journal of Applied Physics 100, 023102-1–4 (2006).
[48] S. S. Choi, S. M. Morris, and H. J. Coles, “Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surfaces,” Applied Physics Letters 91, 231110-1–3 (2007).
[49] S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “The switching properties of chiral nematic liquid crystals using electrically commanded surfaces,” Soft Matter 5, 354–362 (2008).
[50] S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tunable liquid crystal photonic bandgaps,” Advanced Materials 21, 3915–3918 (2009).
[51] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Materials 1, 64–68 (2002).
[52] W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Materials 1, 111–113 (2002).
[53] R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Japanese Journal of Applied Physics 41, L1482–L1484 (2002).
[54] R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Applied Physics Letters 82, 3593–3595 (2003).
[55] R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Low driving voltage tunable laser based on one-dimensional photonic crystal containing liquid crystal defect layer,” Molecular Crystals and Liquid Crystals 441, 87–95 (2005).
[56] Y. Matsuhisa, R. Ozaki, K. Yoshino, and M. Ozaki, “High Q defect mode and laser action in one-dimensional hybrid photonic crsytal containing cholesteric liquid crystal,” Applied Physics Letters 89, 101109-1–3 (2006).
[57] Y. Matsuhisa, R. Ozaki, Y. Takao, and M. Ozaki, “Linearly polarized lasing in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal,” Journal of Applied Physics 101, 033120-1–4 (2007).
[58] B. Park, M. Kim, S. W. Kim, and I. T. Kim, “Circularly polarized unidirectional lasing from a cholesteric liquid crystal layer on a 1-D photonic crystal substrate,” Optics Express 17, 12323–12331 (2009).
[59] R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode switching in one-dimensional photonic crystal with nematic liquid crystal as defect layer,” Japanese Journal of Applied Physics 42, L669–L671 (2003).
[60] R. Ozaki, H. Moritake, K. Yoshino, and M. Ozaki, “Analysis of defect mode switching response in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” Journal of Applied Physics 101, 033503-1–6 (2007).
[61] V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Y. Zyryanov, and V. F. Shabanov, “Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer,” The European Physical Journal E 24, 297–302 (2007).
[62] V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Y. Zyryanov, S. Y. Vetrov, and V. F. Shabanov, “One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes,” Journal of Experimental and Theoretical Physics 106, 388–398 (2008).
[63] V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Optics Express 18, 1283–1288 (2010).
[64] R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Japanese Journal of Applied Physics 43, L1477–L1479 (2004).
[65] C.-Y. Wu, Y.-H. Zou, I. Timofeev, Y.-T. Lin, V. Y. Zyryanov, J.-S. Hsu, and W. Lee, “Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer,” Optics Express 19, 7349–7355 (2011).
[66] Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Y. Zyryanov, and W. Lee, “Tunable photonic device based on photonic crystal infiltrated with a deal-frequency cholesteric liquid crystal,” Optics Express 36, 2632– 2634 (2011).
[67] G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Holt, Rinehart and Winston, New York, 1975), pp. 96–102.
[68] E. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “High tunability mixed order photonic crystal,” Applied Physics Letters 96, 163507-1–3 (2010).
[69] A. B. Bleecker, M. A. Estelle, C. Somerville, and H. Kende, “Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana,” Science 241, 1086–1089 (1988).
[70] Y. Lin, L. Sun, L. V. Nguyen, R. A. Rachubinski, and H. M. Goodman, “The pex16p homolog SSE1 and storage organelle formation in Arabidopsis seeds,” Science 284, 328–330 (1999).
[71] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[72] S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2008).
[73] A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Optics Letters 26, 804–806 (2001).
[74] V. A. Hovhannisyan, P.-J. Su, Y.-F. Chen, and C.-Y. Dong, “Image heterogeneity correction in large-area, three-dimensional multiphoton microscopy,” Optics Express 16, 5107–5117 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17383-
dc.description.abstract高強度的激發光場會產生光破壞,也就是光漂白效應,已經是生物科技裡的長久大問題。在顯微鏡系統下,這效應會強烈的破壞樣品。現在,我們利用一個特殊的元件取代蓋玻片,增強激發與收光的效率,最高達到20倍的增益,同時解決光漂白這大問題。利用一維光子晶體引入液晶缺陷層為此元件的新穎結構。與過去的強化激發振幅致螢光放大研究相比,我們利用元件縮短激發雷射的脈衝,在同功率下使多光子激發機率大幅提升。此元件擁有兩種模態:可調控螢光增強與強烈螢光增強型,使得此種元件在生物醫學影像科技上開啟新的一頁。zh_TW
dc.description.abstractThe photobleaching effect is the photochemical destruction of a fluorophore by high-intensity light, which has long been a nuisance in the field of biotechnology. This undesired effect damages the bio-sample intensively, as often encountered in multiphoton microscopy. Here, we demonstrate a unique cover glass-like device to solely enhancing the fluorescence excitation and detection, achieving a 20-fold maximum gain without photobleaching, by means of a one-dimensional photonic crystal infiltrated with liquid crystal as a central defect layer. In comparison with the typical fluorescence enhancement techniques involving the excitation amplification proposed previously, our method, characterized by the compression of excitation pulse instead, generates the higher excitation possibility. The photonic bandgap structure employed in this approach possesses two modes: tunable fluorescence enhanced and strong fluorescence enhanced, enabling such devices to find a place in bio-imaging technologies.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:09:56Z (GMT). No. of bitstreams: 1
ntu-102-R00245005-1.pdf: 4946102 bytes, checksum: 275adb7a5e512adeeb0d873c6d44e820 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgements I
Abstract V
中文摘要 VI
Contents IV
List of Figures IX
Chapter 1  Introduction 1
1.1 Multiphoton Fluorescence Microscopy 1
1.2 Photobleaching and Pulse Compression 3
1.3 Development of Photonic Crystals 7
1.4 Development of Liquid Crystals 9
1.5 1D PC/LC Hybrid Cells 11
Chapter 2  Basics Principles 15
2.1 Multilayer Films of PC 15
2.2 Principle of Multiphoton Excitation 25
2.3 Principle of Optical Autocorrection 29
Chapter 3  Materials and Methods 31
3.1 Device Design 31
3.1 Fabrication Procedure 32
3.2 Sample Preparation 37
3.3 Experimental Set-up 37
3.4 Optical Autocorrector in Microscopy 38
Chapter 4  Results and Discussion 41
4.1 Performance of Device 41
4.2 FDTD and FEM Simulation 44
4.2 Spectral Properties 46
4.3 Pulse Width Measurement 49
4.3 Fluorescence Enhanced Images 51
4.3 Photobeaching-free 52
4.3 Test in Arabidopsis 54
Chapter 5  Conclusions and Future Prospects 56
5.1 Conclusions 56
5.2 Prospects 57
References 58
Appendix 66
dc.language.isoen
dc.title增強多光子螢光訊號顯微鏡zh_TW
dc.titleSignal Enhancement in Multiphoton Fluorescence Microscopyen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張顏暉(Yuan-Huei Chang),陳永芳(Yang-Fang Chen),石明豐(Ming-Feng Shih)
dc.subject.keyword多光子螢光顯微鏡,光子晶體,液晶,脈衝壓縮,zh_TW
dc.subject.keywordmultiphoton fluorescence microscopy,photonic crystals,liquid crystals,pulse compression,en
dc.relation.page67
dc.rights.note未授權
dc.date.accepted2013-08-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
Appears in Collections:應用物理研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
4.83 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved