請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17379完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | Wei-Jhen Huang | en |
| dc.contributor.author | 黃薇臻 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:09:43Z | - |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-08 | |
| dc.identifier.citation | Anton ES, Marchionni MA, Lee KF, Rakic P. (1997) Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in thedeveloping cerebral cortex. Development, 124:3501-10.
Back SH, Schroder M, Lee K, Zhang K, Kaufman RJ. (2005) ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods, 35:395-416. Back SH, Lee K, Vink E, Kaufman RJ. (2006) Cytoplasmic IRE1alpha-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J Biol Chem., 281:18691-706. Barone MV, Crozat A, Tabaee A, Philipson L, Ron D. (1994) CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev., 8:453-64. Batchvarova N, Wang XZ, Ron D. (1995) Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J., 14:4654-61. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol., 2:326-32. Booth C, Koch GL. (1989) Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell, 59:729-37. Bruhat A, Jousse C, Wang XZ, Ron D, Ferrara M, Fafournoux P. (1997) Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J Biol Chem., 272:17588-93. Casagrande R, Stern P, Diehn M, Shamu C, Osario M, Zuniga M, Brown PO, Ploegh H. (2000) Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol Cell., 5:729-35. Chen SW. (2011) Cell-type specific response to ER- associated stress in brain of zebrafish embryo. 國立台灣大學生命科學院分子與細胞生物學研究所碩士論文 Chen YJ, Tan BC, Cheng YY, Chen JS, Lee SC. (2010) Differential regulation of CHOP translation by phosphorylated eIF4E under stress conditions. Nucleic Acids Res., 38:764-77. Chen G, Fan Z, Wang X, Ma C, Bower KA, Shi X, Ke ZJ, Luo J. (2007) Brain-derived neurotrophic factor suppresses tunicamycin-induced upregulation of CHOP in neurons. J Neurosci Res., 85:1674-84. Chipuk JE, Green DR. (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol., 18: 157–164. Davenport EL, Moore HE, Dunlop AS, Sharp SY, Workman P, Morgan GJ, Davies FE. (2007) Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myelomaplasma cells. Blood, 110:2641-9. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D. (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol., 24:10161-8. Ellis RJ, van der Vies SM. (1991) Molecular chaperones. Annu Rev Biochem., 60:321-47. Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ. (1999) Complexes containing activating transcription factor (ATF)/ cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J., 339: 135-41. Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, Takeda K, Akira S, Shimokata K, Isobe K. (2003) The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J., 1 7:1573-5. Gaba A, Wang Z, Krishnamoorthy T, Hinnebusch AG, Sachs MS. (2001) Physical evidence for distinct mechanisms of translational control by upstream open reading frames. EMBO J., 20:6453-63. Ganz J, Kaslin J, Hochmann S, Freudenreich D, Brand M. (2010) Heterogeneity and Fgf dependence of adult neural progenitors in thezebrafish telencephalon. Glia, 58:1345-63. Gioia U, Laneve P, Dlakic M, Arceci M, Bozzoni I, Caffarelli E. (2005) Functional characterization of XendoU, the endoribonuclease involved in small nucleolar RNA biosynthesis. J Biol Chem., 280:18996-9002. Gotoh T, Terada K, Oyadomari S, Mori M. (2004) hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Baxto mitochondria. Cell Death Differ., 11:390-402. Grundmann U, Romisch J, Siebold B, Bohn H, Amann E (1990) Cloning and expression of a cDNA encoding human placental protein 11, a putative serine protease with diagnostic significance as a tumor marker. DNA Cell Biol., 9:243-50. Guneş S, Dirik E, Yiş U, Seckin E, Kuralay F, Kose S, Unalp A. (2009) Oxidant status in children after febrile seizures. Pediatr Neurol, 40:47-9. Hahn JS, Hu Z, Thiele DJ, Iyer VR. (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol., 24:5249-56. Han D, Lerner AG, Vande Walle L, Upton JP, Xu W, Hagen A, Backes BJ, Oakes SA, Papa FR. (2009) IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell, 138:562-75. Jackson RJ, Hellen CU, Pestova TV. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol., 11(2):113-27. Jousse C, Bruhat A, Carraro V, Urano F, Ferrara M, Ron D and Fafournoux P. (2001) Inhibition of CHOP translation by apeptide encoded by an open reading frame localized in the chop 5’UTR. Nucleic Acids Res., 29: 4341–4351. Kaslin J, Ganz J, Geffarth M, Grandel H, Hans S, Brand M. (2009) Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J. Neurosci, 29:6142-53. Katyal S, el-Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, McKinnon PJ. (2007) TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J., 26:4720-31. Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M. (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development, 138:4831-41. Kur E, Christa A, Veth KN, Gajera CR, Andrade-Navarro MA, Zhang J, Willer JR, Gregg RG, Abdelilah-Seyfried S, Bachmann S, Link BA, Hammes A, Willnow TE. (2011) Loss of Lrp2 in zebrafish disrupts pronephric tubular clearance but not forebrain development. Dev Dyn., 240:1567-77. Lee HC, Chen YJ, Liu YW, Lin KY, Chen SW, Lin CY, Lu YC, Hsu PC, Lee SC, Tsai HJ (2011).Transgenic zebrafish model to study translational control mediated by upstream open reading frame of humanchop gene. Nucleic Acids Res., 39:139. Li WW, Alexandre S, Cao X, Lee AS. (1993) Transactivation of the grp78 promoter by Ca2+ depletion. A comparative analysis with A23187 and theendoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin. J Biol Chem., 268:12003-9. Liang SH, Zhang W, McGrath BC, Zhang P, Cavener DR. (2006) PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem J., 393:201-9. Ma Y, Hendershot LM. (2003) Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem., 278:34864-73. Ma Y, Hendershot LM. (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat., 28:51-65. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev., 18:3066-77. Matsukawa J, Matsuzawa A, Takeda K, Ichijo H. (2004) The ASK1-MAP kinase cascades in mammalian stress response. J Biochem., 13: 261-5. Matsumoto M, Minami M, Takeda K, Sakao Y, Akira S. (1996) Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett., 395:143-7. Milleron RS, Bratton SB. (2006) Heat shock induces apoptosis independently of any known initiator caspase-activating complex. J Biol Chem., 281:16991-7000. Mori T, Buffo A, Gotz M. (2005) The novel roles of glial cells revisited: the contribution of radial glia and astrocytes toneurogenesis. Curr Top Dev Biol., 69:67-99. Novoa I, Zeng H, Harding HP, Ron D (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol., 153: 1011-22. Palam LR, Baird TD, Wek RC. (2011) Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream CDS to enhance CHOP translation. J Biol Chem., 286:10939-49 Renzi F, Caffarelli E, Laneve P, Bozzoni I, Brunori M, Vallone B. (2006) The structure of the endoribonuclease XendoU: From small nucleolar RNA processing to severe acute respiratory syndrome coronavirus replication. Proc Natl Acad Sci U S A., 103:12365-70.. Rietsch A, Beckwith J. (1998) The genetics of disulfide bond metabolism. Annu Rev Genet., 32:163-84. Rolli-Derkinderen M, Gaestel M. (2000) p38/SAPK2-dependent gene expression in Jurkat T cells. Biol Chem., 381:193-8. Ron D, Habener JF. (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev., 6:439-53. Ron D. (2000) Translational control in the endoplasmic reticulum stress response. J Clin Invest., 110:1383-8. Rong Y, Distelhorst CW. (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol., 70: 73–91. Schmitt-Ney M, Habener JF. (2000) CHOP/GADD153 gene expression response to cellular stresses inhibited by prior exposure to ultraviolet light wavelength band C (UVC). Inhibitory sequence mediating the UVC response localized to exon 1. J Biol Chem., 275:40839-45. Schroder M, Kaufman RJ. (2005) ER stress and the unfolded protein response. Mutat Res., 569:29-63. Shen J, Chen X, Hendershot L, Prywes R. (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell., 3:99-111. Tong SK, Mouriec K, Kuo MW, Pellegrini E, Gueguen MM, Brion F, Kah O, Chung BC. (2009) A cyp19a1b-GFP (Aromatase B) Transgenic Zebrafish Line That Expresses GFP in Radial Glial Cells. Genesis, 47:67-73.. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell, 101:249-58. Umek RM, Friedman AD, McKnight SL. (1991) CCAAT-enhancer binding protein: a component of a differentiation switch. Science, 251:288-92. van der Sanden MH, Houweling M, van Golde LM, Vaandrager AB. (2003) Inhibition of phosphatidylcholine synthesis induces expression of the endoplasmic reticulum. Biochem J., 369:643-50. Vattem KM, Wek RC. (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A.., 101:11269-74. Walter P, Ron D. (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science, 334:1081-6. Wang X, Olberding KE, White C, Li C. (2011) Bcl-2 proteins regulate ER membrane permeability to luminal proteins during ER stress-induced apoptosis. Cell Death Differ., 18: 38-47. Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ, Boorstein R, Kreibich G, Hendershot LM, Ron D. (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol., 16:4273-80. Yamaguchi H, Wang HG. (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem., 279:45495-502. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 6:1355-64. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881-91. Zimmer T, Ogura A, Ohta A, Takagi M. (1999) Misfolded membrane-bound cytochrome P450 activates KAR2 induction through two distinct mechanisms. J Biochem., 126:1080-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17379 | - |
| dc.description.abstract | 細胞受到刺激造成不能正常摺疊的蛋白質累積在內質網 (Endoplasmic Reticulum, ER) 而產生內質網壓力 (ER stress) 時,C/EBP homologous protein (CHOP) 會受unfolded protein response (UPR) 調控,並在細胞修復與凋亡(apoptosis)過程中扮演著重要的角色。目前已知 ER stress 會調節 chop mRNA 的 upstream open reading frame (uORFchop) 的轉譯抑制能力來影響 CHOP 表現,但其詳細調控模式仍不清楚。因此本研究將利用 CMV promoter 驅動表現末端融合綠螢光報導基因的人類 uORFchop (huORFchop) 之轉殖斑馬魚 (huORFZ) 做為研究平台,在 in vivo系統下研究uORFchop 的調控機制。以熱逆境誘導 ER stress 產生時,96 hpf 時期之 huORFZ 胚胎的腦部綠螢光訊號強度與熱處理時間和胚胎損傷程度有正相關的趨勢,說明 huORFZ 胚胎在一群對於熱有敏銳反應的腦細胞,且部分位於腦腔 (ventricular zone) 與腦摺 (brain folds) 周圍,而活化態 caspase 3的免疫螢光染色結果顯示這些綠螢光腦細胞不會走向凋亡。接著在各種標記蛋白的免疫螢光染色結中,因熱逆境誘導產生的綠螢光訊號會出現在 GS(+) 似放射狀神經膠細胞 (redial glia-like cells),而不出現於 HuC/D(+) 神經細胞 (neurons),表示這兩種腦細胞對 ER stress 的反應路徑有些不同,因此熱逆境只會誘導GS(+) 神經膠細胞的 huORFchop 失去功能。為探討綠螢光細胞所屬特性,利用 BrdU 標定法指出少數綠螢光細胞在熱處理後的24小時內有增生現象,另一方面則藉著熱逆境產生的綠螢光追蹤到極少部分綠螢光細胞在9天大的胚胎發育時期會表現 HuC/D,表示這些對熱敏感的綠螢光腦細胞可能具有增生與分化潛力。更進一步地,利用結合活體胚胎冷凍包埋切片與 Laser Microdissection 所建立的細胞收集系統,分別擷取有經過熱處理的 huORFZ 胚胎之非綠螢光腦細胞與綠螢光腦細胞後,藉由 microarray 分析來尋找影響 huORFchop 功能的相關因子。Microarray 結果指出基因 dkey 在綠螢光細胞內的轉錄效率較非綠螢光細胞高,而全胚胎原位雜交染色發現 dkey mRNA 表現量與具有熱敏銳特性之神經膠細胞的綠螢光訊號有正相關的趨勢。此外,在沒有將胚胎進行熱處理的情況下,有注射 dkey mRNA 的 huORFZ 胚胎會出現綠螢光訊號。綜合上述實驗結果,本研究證明了熱逆境誘導 huORFchop轉譯抑制功能的喪失具有細胞種類特異性,以及推測 dkey 可能參與在熱逆境影響 huORFchop 的調控路徑中。 | zh_TW |
| dc.description.abstract | When cells encounter endoplasmic reticulum (ER) stress caused by the accumulation of misfolded proteins in the ER, unfolded protein response (UPR) lead to upregulation of C/EBP homologous protein (CHOP) which plays important roles in both cell survival and apoptosis. It has been reported the uORF sequence located in 5`UTR of human chop gene (huORFchop) inhibits the translation of chop. However, underlying molecular mechanisms is poorly understood and there was no in vivo animal model for studying uORFchop mechanism until recently. To study the mechanism of huORFchop mediated translational control in vivo, I used the zebrafish transgenic line, termed huORFZ, harboring a construct in which the uORFchop sequence is added to the leader of GFP and is driven by a cytomegalovirus promoter. The GFP appeared only when huORFZ embryos were treated with ER stress. Through using the heat-shock to induce ER stress, the expression level of GFP signal in the 96 hpf huORFZ embryo brain was dependent to treatment time, indicating dose-dependent effect. Also, GFP signal appeared in ventricular zone and brain folds. However, Immunohistochemistry of active caspase3 showed that these GFP(+) brain cells as non-apoptotic cells. Interestingly, immunohistochemistry identified these heat-induced GFP(+) cells with longer processes were GS(+) redial glia-like cells, but not HuC/D(+) neurons, suggesting the responses to ER stress were different between these two groups of cells and huORFchop mediated translational inhibition was only repressed by heat-shock in GS(+) glia cells. Moreover, BrdU assay showed that GFP(+) cells proliferated in 24 hr after heat-shock treatment. Lineage tracing by heat-induced GFP showed a few GFP(+) cells expressed neuron-specific marker HuC/D in 9 dpf embryo. Therefore, the heat-induced GFP(+) brain cells may have proliferational and deffriancational potential. Furthermore, I developed a Laser capture Microdissection to harvest GFP(-) brain cell and GFP(+) brain cells, and using microarray analysis to find out which factors are involve in regulating huORFchop. In the microarray results, dkey was one of the upregulated genes in GFP(+) cells. Whole mount in situ hybridization showed that the translation of dkey was up regulated and its translation level correlated to the GFP signal in embryo brain. Moreover, GFP signal were detected in huORFZ embryos injected with dkey mRNA without heat-shock treatment. Based on the above results, I demonstrated that repression of huORFchop mediated translational inhibition have cell-type-specific response to heat stress and propose that dkey is involved in huORFchop mediated translational control under heat-shock stress. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:09:43Z (GMT). No. of bitstreams: 1 ntu-102-R00b43016-1.pdf: 3565095 bytes, checksum: 1b7a49aab54fe053b2e06c0613013b01 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………….……………………………..1
英文摘要…………………………………………..……………………………….3 文獻回顧…………………………………………………………………………5 前言………………………….…………………………………………………19 實驗材料與方法……………………………………………………………21 結果…………………………………………………………………………30 討論……………………………………………..…………………………………41 參考文獻………………………………………………………………………49 圖說……………………………………………….………………………………56 附錄………………………………………….…………………………………69 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用有對熱逆境敏銳反應的腦細胞來探討轉譯抑制的機制 | zh_TW |
| dc.title | Using Heat-shock-stress-responsive Cells in Brain to Study Translational Inhibitio | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳盛良(Shen-Liang Chen),鄭邑荃(Yi-Chuan Cheng),呂勝春(Sheng-Chung Lee),管永恕(Yung-Shu Kuan) | |
| dc.subject.keyword | uORF,熱逆境, | zh_TW |
| dc.subject.keyword | uORF,heat-shock response, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-08 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
