請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17362完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張倉榮(Tsang-Jung Chang) | |
| dc.contributor.author | Shuo-Yan Gao | en |
| dc.contributor.author | 高碩彥 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:08:48Z | - |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-09 | |
| dc.identifier.citation | 1. Ahmed, F. and Rajaratnam, N., 1998. 'Flow around Bridge Piers.' Journal of Hydraulic Engineering 124(3): 288-300.
2. Alam, M. M., Sakamoto, H. and Zhou, Y., 2005. 'Determination of flow configurations and fluid forces acting on two staggered circular cylinders of equal diameter in cross-flow.' Journal of Fluids and Structures 21(4): 363-394. 3. Alfonsi, G., 2009. 'Reynolds-Averaged Navier–Stokes Equations for Turbulence Modeling.' Applied Mechanics Reviews 62(4): 040-802. 4. Bhattacharyya, S., Dhinakaran, S. and Khalili, A., 2006. 'Fluid motion around and through a porous cylinder.' Chemical Engineering Science 61(13): 4451-4461. 5. Bhattacharyya, S. and Singh, A. K., 2009. 'Reduction in drag and vortex shedding frequency through porous sheath around a circular cylinder.' International Journal for Numerical Methods in Fluids 65(6): 683-698. 6. Chan, H. C., Huang, W. C., Leu, J. M. and Lai, C. J., 2007. 'Macroscopic modeling of turbulent flow over a porous medium.' International Journal of Heat and Fluid Flow 28(5): 1157-1166. 7. Dehkordi, B. G., Moghaddam, H. S. and Jafari, H. H., 2011. 'Numerical simulation of flow over two circular cylinders in tandem arrangement.' Journal of Hydrodynamics, Ser. B 23(1): 114-126. 8. FLUENT 12.0 User’s Guide, 2009a. 9. FLUENT 12.0 Theory Guide, 2009b. 10. Fransson, J. H. M., Konieczny, P. and Alfredsson, P. H., 2004. 'Flow around a porous cylinder subject to continuous suction or blowing.' Journal of Fluids and Structures 19(8): 1031-1048. 11. Hirt, C. W. and Nichols, B. D., 1981. 'Volume of fluid (VOF) method for the dynamics of free boundaries.' Journal of Computational Physics 39(1): 201-225. 12. Kirkgoz, M. S., Oner, A. A. and Akoz, M. S., 2009. 'Numerical modeling of interaction of a current with a circular cylinder near a rigid bed.' Advances in Engineering Software 40(11): 1191-1199. 13. Lam, K., Lin, Y. F., Zou, L. and Liu, Y., 2012. 'Numerical study of flow patterns and force characteristics for square and rectangular cylinders with wavy surfaces.' Journal of Fluids and Structures 28: 359-377. 14. Layek, G. C., Midya, C. and Gupta, A. S., 2008. 'Influences of suction and blowing on vortex shedding behind a square cylinder in a channel.' International Journal of Non-Linear Mechanics 43(9): 979-984. 15. Li, C. W. and Xie, J. F., 2011. 'Numerical modeling of free surface flow over submerged and highly flexible vegetation.' Advances in Water Resources 34(4): 468-477. 16. Lin, M. Y. and Huang, L. H., 2010. 'Free-surface flow past a submerged cylinder.' Journal of Hydrodynamics, Ser. B 22(5): 209-214. 17. Miyata, H., Shikazono, N. and Kanai, M., 1990. 'Forces on a circular cylinder advancing steadily beneath the free-surface.' Ocean Engineering 17(1–2): 81-104. 18. Prinos, P., Sofialidis, D. and Keramaris, E., 2003. 'Turbulent flow over and within a porous bed.' journal of hydraulic engineering 129(9): 720-733. 19. Reynolds, O., 1895. 'On the dynamical theory of incompressible viscous fluids and the determination of the criterion.' Phil. Trans. R. Soc. London A 186: 123-164. 20. Salaheldin, T. M., Imran, J. and Chaudhry, M. H., 2004. 'Numerical modeling of three-dimensional flow field around circular piers.' Journal of Hydraulic Engineering 130(2): 91-100. 21. Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z. and Zhu, J., 1995. 'A new k-ϵ eddy viscosity model for high reynolds number turbulent flows.' Computers & Fluids 24(3): 227-238. 22. Jue, T. C., 2004. 'Numerical analysis of vortex shedding behind a porous square cylinder', International Journal of Numerical Methods for Heat & Fluid Flow 14(5): 649 – 663. 23. Versteeg, H. K. and Malalasekera, W., 2007. 'An introduction to computational fluid dynamic: the finite volume method (2nd edition)'. England: Pearson Education. 24. Wilson, J. D., 1985. 'Numerical studies of flow through a windbreak.' Journal of Wind Engineering and Industrial Aerodynamics 21(2): 119-154. 25. Zhao, Y. P., Bi, C. W., Dong, G. H., Gui, F. K., Cui, Y., Guan, C. T. and Xu, T. J., 2013. 'Numerical simulation of the flow around fishing plane nets using the porous media model.' Ocean Engineering 62: 25-37. 26. Zou, L. and Lin, Y. F., 2009. 'Force reduction of flow around a sinusoidal wavy cylinder.' Journal of Hydrodynamics, Ser. B 21(3): 308-315. 27. 朱佳仁,2003。「環境流體力學」,科技圖書出版公司,臺北市。 28. 張興漢,2004。「波浪與近岸潛沒透水結構物之交互作用」,國立成功大學水利及海洋工程研究所博士論文。 29. 傅家楊,2006。「筐網結構物在不同水流攻角對橋墩沖刷保護之影響」,國立成功大學水利及海洋工程研究所碩士論文。 30. 黃進坤,2006。「橋墩保護新工法之研究」,台灣公路工程,第32卷第8期,頁39-44。 31. 石武融,2007。「透水性筐網圓柱之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。 32. 黃婉筑,2007。「明渠通過孔隙方塊之三維流場模擬分析」,國立成功大學水利及海洋工程研究所碩士論文。 33. 洪思維,2008。「透水筐網圓柱距離底床不同高度之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。 34. 顧可欣,張高華,張倉榮,2008。「三維度魚道水理及魚體行進力能之數值模擬研究」,農業工程學報,第54卷第3期,頁64-84。 35. 梁景俊,2009。「透水性筐網圓柱群之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。 36. 黃怡仁,2009。「直排筐網群樁於渠道中之沖淤現象」,國立成功大學水利及海洋工程研究所碩士論文。 37. 黃偉哲,2009。「渠流通過透水構造物之流場及紊流特性研究」,國立成功大學水利及海洋工程研究所博士論文。 38. 許少華,經濟部水利署水利規劃試驗所,2010。「研發透水性結構物以防制河岸沖刷之實驗與數值模擬」,台中市。 39. 許少華,經濟部水利署水利規劃試驗所,2011。「研發透水性結構物以防制河岸沖刷之實驗與數值模擬」,台中市。 40. 張家銘,2011。「孔隙消能結構物之三維度流場數值研析」,國立臺灣大學生物資源暨農學院生物環境系統工程學研究所碩士論文。 41. 王婉綺,2012。「透水性圓柱群之三維度流場數值模擬」,國立臺灣大學生物資源暨農學院生物環境系統工程學研究所碩士論文。 42. 許少華,經濟部水利署水利規劃試驗所,2012。「研發透水性結構物以防制河岸沖刷之實驗與數值模擬」,台中市。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17362 | - |
| dc.description.abstract | 本研究以三維數值模式模擬水流流經透水性圓柱之流場,探討透水性圓柱於不同浸沒水深的流場特性及受力情形。模式中使用有限體積法離散控制方程式,並以標準k-ε紊流模式及體積分率法,模擬紊流流況及自由液面之變化情形。為了呈現水流受透水性圓柱之阻滯現象,孔隙介質流模式將引用於模擬當中。與水工模型試驗驗證後,發現模式與試驗結果有一致的趨勢,顯示本研究所選用的模式應用於研究流場具有足夠的精確度。
在單根透水性圓柱應用案例中,流況分為浸沒及非浸沒等五組不同平均水位,且採用五種不同孔隙率。非浸沒流況下,圓柱受力與平均水位成正比關係;浸沒流況下,圓柱受力則與平均水位為反比關係。另外,平均水位在略等同於圓柱高度時,圓柱受力為五組不同平均水位中最大。在多排圓柱群應用案例中,一共設置四種模擬情境。案例A:非交錯排列之透水性圓柱群於浸沒流況、B:非交錯排列之實心圓柱群於浸沒流況、C:交錯排列之透水性圓柱群於浸沒流況、與D:非交錯排列之透水性圓柱群於非浸沒流況。在案例A和B中比較透水與實心圓柱群排與排間的受力差異,受力折減率各別為17%與11%,顯示透水性圓柱群中排與排間的影響較大。在案例A和C中,受力折減率在交錯排列下為25%,其較非交錯排列下之17%高。在案例A和D中,受力折減率在非浸沒流況為27%,而在浸沒流況為17%。 | zh_TW |
| dc.description.abstract | In this study, flows through porous cylinders are simulated by three-dimensional computational fluid dynamics software FLUENT and their acting forces in different water depths are discussed. The standard k-ε turbulent model and the volume fluid method (VOF) are adopted to describe the turbulent flows with free surface. To reflect the blockage effect of flows through porous cylinders, a porous media theory is introduced herein. The simulated results against the experimental data show good agreement.
The resistant forces on a single cylinder with various porosities in various water depths are investigated. It is found that the resistant force increases as the water depth increases in non-submerged flows while the resistant force decreases as the water depth increases in submerged flows. In the cases of multi-row cylinders, four scenarios such as Scenario A: non-staggered porous cylinders in submerged flows, Scenario B: non-staggered solid cylinders in submerged flows, Scenario C: staggered porous cylinders in submerged flows and Scenario D: non-staggered porous cylinders in non-submerged flows are performed. To summary, from Scenarios A and B, the reduction rates in average force are respectively 17% and 11% for porous and solid cylinders. It means that the interacting effect between two rows of porous cylinders is more significant. To compare Scenarios A and C, the reduction rate in average force as 25% in staggered arrangements is larger than that as 17% in non-staggered arrangements. It can be found that the reduction rate in average force is 27% in non-submerged flows while that is 17% in submerged flows in Scenarios A and D. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:08:48Z (GMT). No. of bitstreams: 1 ntu-102-R00622025-1.pdf: 4593243 bytes, checksum: 13d9273ab61fc710a1053845c0f20f45 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract II 目錄 IV 表目錄 VI 圖目錄 VII 符號對照表 X 第一章 緒論 1 1.1前言 1 1.2研究目的 2 1.3文獻回顧 3 1.3.1水工模型試驗研究 3 1.3.2數值模擬研究 4 第二章 理論模式 8 2.1流場控制方程式 8 2.2紊流模式k –ε 10 2.3近壁處理 11 2.4孔隙介質流模式 13 2.5體積分率法 13 第三章 數值步驟與方法 16 3.1數值模擬架構 16 3.2離散方法 17 3.3控制方程式的離散 18 3.4收斂條件 19 3.5邊界條件設定 20 3.6阻力計算 22 第四章 單根圓柱之流場模擬與討論 25 4.1模式驗證 25 4.1.1實心圓柱驗證 26 4.1.2透水性圓柱驗證 27 4.2單根透水性圓柱應用案例 28 4.2.1單根透水性圓柱於浸沒與非浸沒之流況探討 29 4.2.3單根透水性圓柱之受力結果探討 31 第五章 多排透水圓柱群應用案例 49 5.1多排圓柱群於透水與非透水之流況與受力探討 50 5.2多排圓柱群於交錯與非交錯之流況與受力探討 52 5.3多排圓柱群於浸沒與非浸沒之流況與受力探討 54 第六章 結論與建議 71 6.1結論 71 6.2建議 73 參考文獻 74 | |
| dc.language.iso | zh-TW | |
| dc.title | 浸沒與非浸沒透水性圓柱之受力及流場模擬研析 | zh_TW |
| dc.title | Numerical Investigation of Flows through Submerged and Non-Submerged Porous Cylinders and Their Acting Forces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 謝正義(Cheng-I Hsieh) | |
| dc.contributor.oralexamcommittee | 朱佳仁(Chia-Ren Chu),陳明志(Ming-Jyh Chern),林怡均(Yi-Jiun Peter LIN) | |
| dc.subject.keyword | 透水性圓柱,體積分率法,標準k–ε紊流模式,孔隙介質流模式, | zh_TW |
| dc.subject.keyword | porous cylinders,standard k-ε turbulent model,volume of fluid,porous media theory, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-09 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
