請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17353完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | Yen-Ting Chen | en |
| dc.contributor.author | 陳彥廷 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:08:21Z | - |
| dc.date.copyright | 2013-08-28 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-12 | |
| dc.identifier.citation | Ai, H.W., Shaner, N.C., Cheng, Z., Tsien, R.Y. and Campbell, R.E. (2007) Explora-tion of new chromophore structures leads to the identification of improved blue fluo-rescent proteins. Biochemistry. 46(20):5904-10.
Alieva, N.O., Konzen, K.A., Field, S.F., Meleshkevitch, E.A., Hunt, M.E., Bel-tran-Ramirez, V., Miller, D.J., Wiedenmann, J., Salih, A. and Matz, M.V. (2008) Diversity and evolution of coral fluorescent proteins. PLoS One. 3(7):e2680. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. and Miyawaki, A. (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A. 99(20):12651-6. Arnold, K., Bordoli, L., Kopp, J. and Schwede T. (2006). The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bio-informatics. 22:195-201. Beddoe, T., Ling, M., Dove, S., Hoegh-Guldberg, O., Devenish, R.J., Prescott, M. and Rossjohn, J. (2003) The production, purification and crystallization of a pocilloporin pigment from a reef-forming coral. Acta Crystallogr D Biol Crystallogr. 59:597-9. Brejc, K., Sixma, T.K., Kitts, P.A., Kain, S.R,, Tsien, R.Y., Ormo, M. and Re-mington, S.J. (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci U S A. 94(6):2306-11. Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A. and Tsien, R.Y. (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A. 99(12):7877-82. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C. (1994) Green fluorescent protein as a marker for gene expression. Science. 263(5148):802-5. Chan, M.C., Karasawa, S., Mizuno, H., Bosanac, I., Ho, D., Prive, G.G., Miyawaki, A. and Ikura, M. (2006) Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus. J Biol Chem. 281(49):37813-9. Chudakov, D.M., Belousov, V.V., Zaraisky, A.G., Novoselov, V.V., Staroverov, D.B., Zorov, D.B., Lukyanov, S. and Lukyanov, K.A. (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol. 21(2):191-4. Chudakov, D.M., Matz, M.V., Lukyanov, S. and Lukyanov, K.A. (2009) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 90(3):1103-63. Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G. and Ward, W.W. (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry. 32(5):1212-8. Cubitt, A.B., Woollenweber, L.A. and Heim, R. (1999) Understanding struc-ture-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol. 58:19-30. Deheyn, D.D., Kubokawa, K., McCarthy, J.K., Murakami, A., Porrachia, M., Rouse, G,W. and Holland, N.D. (2007) Endogenous green fluorescent protein (GFP) in amphioxus. Biol Bull. 213(2):95-100. Dove, S.G., Hoegh-Guldberg, O. and Ranganathan, S. (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reef. 19:197-204. Dove, S.G., Takabayashi, M. and Hoegh-Guldberg O. (1995) Isolation and partial characterization of the pink and blue pigments of pocilloporid and acroporid corals. Biol. Bull. 189:288-97. Fradkov, A.F., Chen, Y., Ding, L., Barsova, E.V., Matz, M.V. and Lukyanov, S.A. (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett. 479(3):127-30. Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E.C., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R.K. and Seed, B. (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell. 94(6):715-25. Gather, M.C. and Yun, S.H. (2011) Single-cell biological lasers. Nat Photonics. 5:406-410. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. and Tsien, R.Y. (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A. 97(22):11990-5. Gurskaya, N.G., Fradkov, A.F., Terskikh, A., Matz, M.V., Labas, Y.A., Martynov, V.I., Yanushevich, Y.G., Lukyanov, K.A. and Lukyanov, S.A. (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett. 507(1):16-20. Gurskaya, N.G., Fradkov, A.F., Pounkova, N.I., Staroverov, D.B., Bulina, M.E., Yanushevich, Y.G., Labas, Y.A., Lukyanov, S. and Lukyanov, K.A. (2003) A col-ourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochem J. 373(Pt 2):403-8. Heim, R., Cubitt, A.B. and Tsien, R.Y. (1995) Improved green fluorescence. Nature. 373(6516):663-4. Heim, R., Prasher, D.C. and Tsien, R.Y. (1994) Wavelength mutations and posttrans-lational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 91(26):12501-4. Heim, R. and Tsien R.Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol.6(2):178-82. Inouye, S. and Tsuji, F.I. (1994) Evidence for redox forms of the Aequorea green flu-orescent protein. FEBS Lett. 351(2):211-4. Janetopoulos, C., Jin, T. and Devreotes, P. (2001) Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science. 291(5512):2408-11. Lukyanov, K.A., Fradkov, A.F., Gurskaya, N.G., Matz, M.V., Labas, Y.A., Savitsky, A.P., Markelov, M.L., Zaraisky, A.G., Zhao, X., Fang, Y., Tan, W. and Lukyanov, S.A. (2000) Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem. 275(34):25879-82. Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G,, Markelov, M.L. and Lukyanov, S.A. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol. (10):969-73. Mena, M.A., Treynor, T.P., Mayo, S.L. and Daugherty, P.S. (2006) Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol. 24(12):1569-71. Mishin, A.S., Subach, F.V., Yampolsky, I.V., King, W., Lukyanov, K.A. and Verkhusha, V.V. (2008) The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry. 47(16):4666-73. Miyawaki, A., Griesbeck, O., Heim, R. and Tsien, R.Y. (1999) Dynamic and quanti-tative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A. 96(5):2135-40. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J,A., Ikura, M. and Tsien, R.Y. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 388(6645):882-7. Mizuno, H., Mal, T.K., Tong, K.I., Ando, R., Furuta, T., Ikura, M. and Miyawaki, A. (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluores-cent protein. Mol Cell. 12(4):1051-8. Morise, H., Shimomura, O., Johnson, F.H. and Winant, J. (1974) Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry. 13(12):2656-62. Mortensen, K. and Larsson, L.I. (2001) Quantitative and qualitative immunofluores-cence studies of neoplastic cells transfected with a construct encoding p53-EGFP. J Histochem Cytochem. 49(11):1363-7. Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y, and Remington, S.J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science. 273(5280):1392-5. Pakhomov, A.A. and Martynov, V.I. (2008) GFP family: structural insights into spec-tral tuning. Chem Biol. 15(8):755-64. Patterson, G.H. and Lippincott-Schwartz, J. (2002) A photoactivatable GFP for se-lective photolabeling of proteins and cells. Science. 297(5588):1873-7. Pletnev, S., Subach, F.V., Dauter, Z., Wlodawer, A. and Verkhusha, V.V. (2010) Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. J Am Chem Soc. 132(7):2243-53. Pletneva, N., Pletnev, V., Tikhonova, T., Pakhomov, A.A., Popov, V., Martynov, V.I., Wlodawer, A., Dauter, Z. and Pletnev, S. (2007) Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus. Acta Crystallogr D Biol Crystallogr. 63(Pt 10):1082-93. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G, and Cormier, M.J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene. 111(2):229-33. Prescott, M., Ling, M., Beddoe, T., Oakley, A.J,, Dove, S., Hoegh-Guldberg, O., Devenish, R.J. and Rossjohn, J. (2003) The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure. 11(3):275-84. Remington, S.J. (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol. 16(6):714-21. Rurack, K. and Spieles, M. (2011) Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm. Anal Chem. 83:1232-42. Sawano, A. and Miyawaki, A. (2000) Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. 28(16):E78. Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E. and Tsien, R.Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 22(12):1567-72. Shcherbo, D., Merzlyak, E.M., Chepurnykh, T.V., Fradkov, A.F., Ermakova, G.V., Solovieva, E.A., Lukyanov, K.A., Bogdanova, E.A., Zaraisky, A.G., Lukyanov, S. and Chudakov, D.M. (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods. 4(9):741-6. Shimomura, O., Johnson, F.H. and Saiga, Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 59:223-39. Shimomura, O. (1979) Structure of the chromophore of Aequorea green fluorescent protein. FEBS Letters. 104:220-22. Shkrob, M.A., Yanushevich, Y.G., Chudakov, D.M., Gurskaya, N.G., Labas, Y.A., Poponov, S.Y., Mudrik, N.N., Lukyanov, S. and Lukyanov, K.A. (2005) Far-red flu-orescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem J. 392(Pt 3):649-54. Shu, X., Wang, L., Colip, L., Kallio, K. and Remington, S.J. (2009) Unique interac-tions between the chromophore and glutamate 16 lead to far-red emission in a red fluo-rescent protein. Protein Sci. 18(2):460-6. Stauber, R.H., Horie, K., Carney, P., Hudson, E.A., Tarasova, N.I., Gaitanaris, G.A. and Pavlakis, G.N. (1998) Development and applications of enhanced green flu-orescent protein mutants. Biotechniques. 24(3):462-6, 468-71. Subach, O.M., Malashkevich, V.N., Zencheck, W.D., Morozova, K.S., Piatkevich, K.D., Almo, S.C. and Verkhusha, V.V. (2010) Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. Chem Biol. 17(4):333-41. Subach, O.M., Cranfill, P.J., Davidson, M.W. and Verkhusha, V.V. (2011) An en-hanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One. 6(12):e28674. Sun, J., Kelemen, G.H., Fernandez-Abalos, J.M. and Bibb, M.J. (1999) Green fluo-rescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology. 145(Pt 9):2221-7. Terskikh, A., Fradkov, A., Ermakova, G., Zaraisky, A., Tan, P., Kajava, A.V., Zhao, X., Lukyanov, S., Matz, M., Kim, S., Weissman, I. and Siebert, P. (2000) 'Fluorescent timer': protein that changes color with time. Science. 290(5496):1585-8. Tsien, R.Y. (1998) The green fluorescent protein. Annu Rev Biochem. 67:509-44. Verkhusha, V.V. and Lukyanov, K.A. (2004) The molecular properties and applica-tions of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol. 22(3):289-96. Wachter, R.M., Watkins, J.L. and Kim, H. (2010) Mechanistic diversity of red fluo-rescence acquisition by GFP-like proteins. Biochemistry. 49(35):7417-27. Ward, W.W. (2006) Biochemical and physical properties of green fluorescent protein. Methods Biochem Anal.47:39-65. Wiedenmann, J,, Elke, C., Spindler, K.D. and Funke, W. (2000) Cracks in the β-can: fluorescent proteins from Anemonia sulcata (Anthozoa, Actinaria). Proc Natl Acad Sci U S A. 97(26):14091-6. Wiehler, J., von Hummel, J. and Steipe, B. (2000) Mutants of Discosoma red fluo-rescent protein with a GFP-like chromophore. FEBS Lett. 487(3):384-9. Wilmann, P.G., Petersen, J., Pettikiriarachchi, A., Buckle, A.M., Smith, S.C., Olsen, S., Perugini, M.A., Devenish, R.J., Prescott, M. and Rossjohn, J. (2005) The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. J Mol Biol. 349(1):223-37. Wong, F.C., Banks, D.S., Abu-Arish, A. and Fradin, C. (2007) A molecular ther-mometer based on fluorescent protein blinking. J. Am. Chem. Soc. 129(34):10302-3 Yang, F., Moss, L.G. and Phillips, G.N. Jr. (1996) The molecular structure of green fluorescent protein. Nat Biotechnol. 14(10):1246-51. Yang, T.T., Sinai, P., Green, G., Kitts, P.A., Chen, Y.T., Lybarger, L., Chervenak, R., Patterson, G.H., Piston, D.W. and Kain, S.R. (1998) Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent pro-tein. J Biol Chem. 273(14):8212-6. The PyMOL Molecular Graphics System, Version 1.3 Schrodinger, LLC. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17353 | - |
| dc.description.abstract | 與綠色螢光蛋白質(green fluorescent protein, GFP)相似之GFP-like protein fam-ily的成員都具有類似的蛋白質結構,其中三個胺基酸X-Tyr-Gly會形成特殊的chromophore結構,這chromophore使GFP-like proteins具有螢光或是色澤的特性。而不同的光譜特性包括最大吸收波、最大激發波、最大發散波、量子產率(quantum yield, φ)及吸收係數(extinction coefficient, ε),是各種GFP-like proteins的辨識方法。GFP-like proteins中最普遍的為綠色螢光蛋白質、紅色螢光蛋白質(red fluorescent protein, RFP)和不具螢光特性之色澤蛋白質(chromoprotein),這些蛋白質的chromophore構造及族譜(protein phylogeny)已大致被分析,但種類仍然有限。目前所知的發散波在460 nm附近之螢光蛋白質皆是由綠色螢光蛋白質或紅色螢光蛋白質突變而來,且有亮度較低及穩定性不佳等缺點。本實驗室先前由海洋生物分離出紫色色澤蛋白質,最大吸收波為578 nm,經過點突變法(point mutation)後將Glu-63突變成Leu,所得之突變蛋白質之最大吸收波會偏移至516 nm,而具有最大發散波在461 nm的螢光,但螢光強度仍然偏低。
本實驗利用UV光刺激該突變蛋白質,可觀察到其最大吸收波紅移至573 nm且螢光性質消失。為了穩定及加強其螢光性質,進一步將Tyr-64突變成Leu,則形成相對較穩定的螢光蛋白質,其最大吸收波偏移至412 nm,最大發散波長為458 nm, quantum yield為0.79。若將Tyr-64突變成His和Phe,則最大放射波長分別偏移至451 nm和460 nm,quantum yield分別為0.17和0.35。軟體模擬計算出距離chromophore結構5 A內之胺基酸,將其突變成利於chromophore結構之穩定的突變蛋白質。這些蛋白質之最大放射波長皆維持在460 nm附近,其中63L/64L/90F、63L/64L/145D和63L/64L/158Q的螢光有稍微減弱之趨勢,quantum yield分別為0.60、0.66和0.73;但另外兩突變型蛋白質的螢光強度提升,quantum yield分別為0.91和0.95。這些新型的螢光蛋白質,無論在大腸桿菌(in vitro)或斑馬魚(in vivo)體內都會表現螢光。藉由改變蛋白質上的胺基酸,直接地或間接地改變chromophore的構形和鍵結,進而改變GFP-like proteins的光譜特性,而找到由shCP突變出具有高quantum yield且穩定的螢光蛋白質。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:08:21Z (GMT). No. of bitstreams: 1 ntu-102-R00b43010-1.pdf: 1852058 bytes, checksum: 15d56bf783f698d7ec1790c1f570f35b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 1
英文摘要 3 文獻回顧 5 前言 16 實驗材料與方法 19 結果 27 討論 35 參考文獻 45 圖表 56 | |
| dc.language.iso | zh-TW | |
| dc.title | 具高量子產率之新型突變蛋白質 | zh_TW |
| dc.title | Novel Mutated Proteins with High Quantum Yield | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宣大衛(David Shiuan),嚴宏洋(Hong-Young Yan),楊啟伸(Chii-Shen Yang) | |
| dc.subject.keyword | 螢光蛋白質,色澤蛋白質,基因轉殖,蛋白質突變, | zh_TW |
| dc.subject.keyword | fluorescent protein,chromoprotein,transgenic,protein mutagenesis, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-12 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
