請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17337
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡睿哲 | |
dc.contributor.author | Hsu-Tang Chang | en |
dc.contributor.author | 張旭棠 | zh_TW |
dc.date.accessioned | 2021-06-08T00:07:31Z | - |
dc.date.copyright | 2013-08-23 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-12 | |
dc.identifier.citation | [1] Y. W. Xu, A. Michael, C. Y. Kwok, and G. D. Peng, 'Detail study on the rear 45° micromirror smoothness on (100) Si substrates,' in Procedia Engineering, Linz, Austria, 2010, pp. 858–861.
[2] Y. W. Xu, A. Michael, and C. Y. Kwok, 'Formation of ultra-smooth 45 degrees micromirror on (100) silicon with low concentration TMAH and surfactant: Techniques for enlarging the truly 45 degrees portion,' Sensors and Actuators a-Physical, vol. 166, pp. 164-171, Mar 2011. [3] H.-C. Lan, H.-L. Hsiao, C.-C. Chang, C.-H. Hsu, C.-M. Wang, and M.-L. Wu, 'Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45 degrees micro-reflector,' Optics Express, vol. 17, pp. 20938-20944, Nov 9 2009. [4] C.-C. Chang, P.-K. Shen, C.-T. Chen, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, et al., 'SOI-based trapezoidal waveguide with 45 degrees microreflector for noncoplanar optical interconnect,' Optics Letters, vol. 37, pp. 782-784, Mar 1 2012. [5] Y. Chiu, H.-F. Shih, J.-C. Chiou, S.-T. Cheng, K.-Y. Hung, F.-G. Tseng, et al., 'Design and Fabrication of a Small-Form-Factor Optical Pickup Head,' IEEE Transactions on Magnetics, vol. 45, pp. 2194-2197, May 2009. [6] C.-H. Lee, Y. Chiu, and H.-P. D. Shieh, 'Astigmatic diffractive optical element for swing-arm-type optical pickup head,' Optical Engineering, vol. 48, Jul 2009. [7] S. Pal and H. Xie, 'Distributed and lumped element models for a bimorph-actuated micromirror,' Journal of Micromechanics and Microengineering, vol. 20, Apr 2010. [8] J. Singh, T. Gan, A. Agarwal, Mohanraj, and S. Liw, '3D free space thermally actuated micromirror device,' Sensors and Actuators a-Physical, vol. 123-24, pp. 468-475, Sep 23 2005. [9] L. A. Liew, A. Tuantranont, and V. M. Bright, 'Modeling of thermal actuation in a bulk-micromachined CMOS micromirror,' Microelectronics Journal, vol. 31, pp. 791-801, Sep-Oct 2000. [10] A. Tuantranont, L. A. Liew, V. M. Bright, W. G. Zhang, and Y. C. Lee, 'Phase-only micromirror array fabricated by standard CMOS process,' Sensors and Actuators a-Physical, vol. 89, pp. 124-134, Mar 20 2001. [11] A. Nakai, K. Hoshino, K. Matsumoto, and I. Shimoyama, 'Double-sided scanning micromirror array for auto stereoscopic display,' Sensors and Actuators a-Physical, vol. 135, pp. 80-85, Mar 30 2007. [12] H.-A. Yang and W. Fang, 'A novel coil-less lorentz force 2D scanning mirror using eddy current,' in MEMS, Istanbul, Turkey, 2006, pp. 774-777. [13] C. H. Ji and Y. K. Kim, 'Electromagnetic micromirror array with single-crystal silicon mirror plate and aluminum spring,' Journal of Lightwave Technology, vol. 21, pp. 584-590, Mar 2003. [14] A. Q. Liu, X. M. Zhang, V. M. Murukeshan, Q. X. Zhang, Q. B. Zou, and S. Uppili, 'An optical crossconnect (OXC) using drawbridge micromirrors,' Sensors and Actuators a-Physical, vol. 97-8, pp. 227-238, Apr 1 2002. [15] J. Singh, A. Agarwal, and M. Soundarapandian, 'A novel electrostatic microactuator for large deflections in MEMS applications,' Thin Solid Films, vol. 504, pp. 64-68, May 10 2006. [16] C.-A. Chen and Y. Chiu, 'Flip-Up Micro Scanning Mirror with Vertical Comb Drive Assembled by Simple Push Operations,' in Optical MEMS and Nanophotonics, Istanbul, 2011, pp. 189-190. [17] K. H. Koh, T. Kobayashi, and C. Lee, 'Investigation of piezoelectric driven MEMS mirrors based on single and double S-shaped PZT actuator for 2-D scanning applications,' Sensors and Actuators a-Physical, vol. 184, pp. 149-159, Sep 2012. [18] T. Iseki, M. Okumura, and T. Sugawara, 'Two-dimensionally deflecting mirror using electromagnetic actuation,' Optical Review, vol. 13, pp. 189-194, Jul-Aug 2006. [19] N. Weber, D. Hertkorn, H. Zappe, and A. Seifert, 'Ultra-compact micromirror with polymeric hard magnet for use in endoscopic imaging,' in Micro Electro Mechanical System (MEMS), Cancun, Mexico, 2011, pp. 732-735. [20] M. R. J. Gibbs, E. W. Hill, and P. J. Wright, 'Magnetic materials for MEMS applications,' Journal of Physics D-Applied Physics, vol. 37, pp. R237-R244, Nov 21 2004. [21] S. Park, S.-R. Chung, and J. T. W. Yeow, 'A design analysis of micromirrors in stacked configurations with moving electrodes ' International Journal on Smart Sensing and Intelligent Systems, vol. 1, pp. 480-497, June 2008. [22] Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, 'Applications of magnetic nanoparticles in biomedicine,' Journal of Physics D-Applied Physics, vol. 36, pp. R167-R181, Jul 7 2003. [23] C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, 'Cell manipulation with magnetic particles toward microfluidic cytometry,' Journal of Applied Physics, vol. 105, May 15 2009. [24] R. Afshar, Y. Moser, T. Lehnert, and M. A. M. Gijs, 'Magnetic particle dosing and size separation in a microfluidic channel,' Sensors and Actuators B-Chemical, vol. 154, pp. 73-80, May 20 2011. [25] A. Bahadorimehr, J. Alvankarian, and B. Y. Majlis, 'Magnetic Force on a Magnetic Bead,' in Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 2012, pp. 280-284. [26] J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, 'Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,' IEEE Transactions on Robotics, vol. 23, pp. 1247-1252, Dec 2007. [27] T. H. Boyer, 'The force on a magnetic dipole,' American Journal of Physics, vol. 56, pp. 688-692, Aug 1988. [28] H. Urey, 'Torsional MEMS scanner design for high-resolution display systems,' in SPIE of Optical Scanning, Seattle, Washington, 2002, pp. 27-37. [29] Y. F. Chen, 'Three-leaf trefoil-type MEMS tunable corner cube retro-reflector,' Master Thesis, National Taiwan University, 2011. [30] A. Cowen, G. Hames, D. Monk, S. Wilcenski, and B. Hardy, SOIMUMPs Desigh Handbook, Rev. 8.0: MEMSCAP, Inc. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17337 | - |
dc.description.abstract | 在這篇論文中,我們提出了一個透過SOIMUMPs製程的磁驅動45°組裝鞦韆式微鏡面結構,這項製程技術是由MEMSCAP公司發展完成。元件製作過程中透過顯微注射器將不同體積的磁性粒子附著在鏡面背後,此步驟是在元件經過無塵室製程的曝光及顯影之後完成。藉由此方法我們可以精準地控制磁性材料的體積和位置。磁驅動微鏡面在外加磁鐵的影響下達到很大的擺動角度,當背面磁性粒子體積為46 nL和69 nL時分別得到擺動角度16.9°和9.8°。我們整合兩顆鞦韆微鏡面發展出兩種光連結系統,藉由雷射光取代真實光訊號量測,結果顯示設計的元件可以成功地運用於光連結和光通訊領域。 | zh_TW |
dc.description.abstract | In this thesis, we present a magnetically actuated 45°-assembled swing-type micromirror fabricated with the SOIMUMPs process. The process is developed by MEMSCAP, Inc. In our device fabrication, magnetic-bead suspension droplets of controlled volume are dispensed over the back of the mirror using a nanoliter injector; this is done after all the clean room processes have been finished and the mirror has been released. With this approach, we are able to precisely control the amount and location of the magnetic material. The magnetically-actuated micromirror provides a wide swing angle under influence of an external permanent magnet. With 46 nL and 69 nL magnetic bead suspension applied to the backside, the swing angles are 16.9° and 9.8° respectively. We develope two light-connecting systems by integrating two swing-type micromirrors and replace the light signal with laser. The result shows that our device can be used successfully in optical interconnects and optical communications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:07:31Z (GMT). No. of bitstreams: 1 ntu-102-R00941057-1.pdf: 21818127 bytes, checksum: faea6de489dc3d2b555642274f8dfbc5 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表格目錄 x 第1章 前言 1 1 微機電系統 1 2 微機電鏡面 1 2-1 45°微鏡面 2 3 微鏡面驅動方法 4 3-1 電熱驅動 4 3-2 勞倫茲力驅動 5 3-3 靜電驅動 6 3-4 磁性材料驅動 7 3-5 驅動比較 9 4 磁性材料 10 第2章 分析及設計 11 1 動機和原理分析 11 2 旋轉方法 14 2-1 彈簧軸 (Torsion spring) 14 2-2 鉸鏈 (Hinge) 15 3 元件設計 15 3-1 鉸鏈 (Hinge) 磁驅動測試 16 3-1-1 Design06 16 3-1-2 Design08 17 3-1-3 Design10 17 3-2 元件設計 19 第3章 實驗儀器設備 22 1 磁性粒子 22 2 顯微注射器 22 3 探針 24 4 磁鐵 24 5 儀器設備特性 25 5-1 注射器重複性 25 5-2 磁通量密度量測 26 第4章 實驗及結果 29 1 滴附磁性粒子 29 2 組裝流程 32 2-1 步驟一 32 2-2 步驟二 33 2-3 步驟三 33 2-4 步驟四 34 2-5 步驟五 34 2-6 步驟六 35 3 實驗量測系統 36 3-1 角度量測系統 36 3-2 雷射光系統 37 4 組裝前磁驅動 37 4-1 鏡面和鏡框 37 4-2 不同鏡面連接桿結構(A和 B)量測 41 4-3 組裝前驅動結果比較 44 5 組裝後磁驅動 45 5-1 單顆驅動 47 5-2 組裝後磁驅動比較 50 5-3 組裝後雙驅動 52 6 單顆雷射量測 55 7 雷射光連結量測 57 7-1 反向式連結(單顆驅動) 59 7-2 順向式連結(單顆驅動) 60 7-3 光連結系統討論 63 第5章 結論 64 第6章 未來工作 65 參考文獻 66 | |
dc.language.iso | zh-TW | |
dc.title | 結合磁性粒子磁驅動之45°組裝鞦韆式微鏡面 | zh_TW |
dc.title | Magnetically Actuated 45°-Assembled Swing-Type Micromirror Integrated with Magnetic Beads | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孫家偉,呂志偉 | |
dc.subject.keyword | 光連結,45°鏡面,微機電系統,磁性粒子,擺動角度,磁驅動, | zh_TW |
dc.subject.keyword | Optical interconnect,45° mirror,microelectromechanical systems,magnetic beads,swing angle,magnetic actuation, | en |
dc.relation.page | 69 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-08-12 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 21.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。