請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17286完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈麗娟(Li-Jiuan Shen) | |
| dc.contributor.author | Sheau-Shan Liu | en |
| dc.contributor.author | 劉曉軒 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:05:00Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | References
1. Budavari S. The Merck index: an encyclopedia of chemicals, drugs, and biological s1989. 2. Griffith RS. Vancomycin use--an historical review. J Antimicrob Chemother. 1984;14:1-5. 3. Griffith RS. Introduction to vancomycin. Rev Infect Dis. 1981;3(4):S200-204. 4. Cunha BA, Ristuccia AM. Clinical usefulness of vancomycin. Clin Pharm. 1983;2(5):417-424. 5. Matzke GR, Zhanel GG, Guay DRP. Clinical Pharmacokinetics of Vancomycin. Clin-Pharmacokinet. 1986;11(4):257-282. 6. Geraci JE, Hermans PE. Vancomycin. Mayo Clin Proc. 1983;58(2):88-91. 7. Murray B, Nannini E. Glycopeptides (vancomycin and teicoplanin), streptogramins,(quinopristin-dalfopristin) and lipopeptides (daptomycin), In: Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases. Philadelphis, PA: Churchill Livingstone/Elsevier2010. 8. Larsson AJ, Walker KJ, Raddatz JK, Rotschafer JC. The concentration-independent effect of monoexponential and biexponential decay in vancomycin concentrations on the killing of Staphylococcus aureus under aerobic and anaerobic conditions. Journal of Antimicrobial Chemotherapy. 1996;38(4):589-597. 9. Lowdin E, Odenholt I, Cars O. In Vitro Studies of Pharmacodynamic Properties of Vancomycin against Staphylococcus aureus andStaphylococcus epidermidis. Antimicrobial agents and chemotherapy. 1998;42(10):2739-2744. 10. Stevens DL. The role of vancomycin in the treatment paradigm. Clin Infect Dis. 2006;1(42):S51-57. 11. Moise PA, Forrest A, Bhavnani SM, Birmingham MC, Schentag JJ. Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus. Am J Health Syst Pharm. 2000;15(57):S4-9. 12. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43(13):925-942. 13. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1-10. 14. Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17(3):479-501. 15. Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can't get there from here. Clin Infect Dis. 2011;52(8):969-974. 16. Rybak MJ, Lomaestro BM, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2009;29(11):1275-1279. 17. Sakoulas G, Moellering RC, Jr. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis. 2008;1(46):533592. 18. Deresinski S. Vancomycin: does it still have a role as an antistaphylococcal agent? Expert Rev Anti Infect Ther. 2007;5(3):393-401. 19. Avent ML, Vaska VL, Rogers BA, et al. Vancomycin therapeutics and monitoring: a contemporary approach. Intern Med J. 2013;43(2):110-119. 20. Nannini E, Murray BE, Arias CA. Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol. 2010;10(5):516-521. 21. Levine DP. Vancomycin: understanding its past and preserving its future. South Med J. 2008;101(3):284-291. 22. Fridkin SK, Hageman J, McDougal LK, et al. Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997-2001. Clin Infect Dis. 2003;36(4):429-439. 23. Lodise T, Graves J, Evans A, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrobial agents and chemotherapy. 2008;52(9):3315-3320. 24. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;1(42):S35-39. 25. Chihara S, Shimizu R, Furukata S, Hoshino K. Oral vancomycin may have significant absorption in patients with Clostridium difficile colitis. Scand J Infect Dis. 2011;43(2):149-150. 26. Matzke GR, Halstenson CE, Olson PL, Collins AJ, Abraham PA. Systemic absorption of oral vancomycin in patients with renal insufficiency and antibiotic-associated colitis. Am J Kidney Dis. 1987;9(5):422-425. 27. Wallace MR, Mascola JR, Oldfield EC, 3rd. Red man syndrome: incidence, etiology, and prophylaxis. J Infect Dis. 1991;164(6):1180-1185. 28. Levy M, Koren G, Dupuis L, Read SE. Vancomycin-induced red man syndrome. Pediatrics. 1990;86(4):572-580. 29. Polk RE, Healy DP, Schwartz LB, Rock DT, Garson ML, Roller K. Vancomycin and the red-man syndrome: pharmacodynamics of histamine release. J Infect Dis. 1988;157(3):502-507. 30. McEvoy G. 'Vancomycin hydrochloride' AHFS Drug Information. ASHP 2013. 31. APP Pharmaceuticals L. Vancomycin Hydrochloride for injection, USP, fliptop vial prescribing information. Schaumburg, IL. 2011. 32. Matzke GR, McGory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother. 1984;25(4):433-437. 33. Rodvold KA, Blum RA, Fischer JH, et al. Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob Agents Chemother. 1988;32(6):848-852. 34. Rotschafer JC, Crossley K, Zaske DE, Mead K, Sawchuk RJ, Solem LD. Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob Agents Chemother. 1982;22(3):391-394. 35. Ackerman BH, Taylor EH, Olsen KM, Abdel-Malak W, Pappas AA. Vancomycin serum protein binding determination by ultrafiltration. Drug Intell Clin Pharm. 1988;22(4):300-303. 36. Albrecht LM, Rybak MJ, Warbasse LH, Edwards DJ. Vancomycin protein binding in patients with infections caused by Staphylococcus aureus. Dicp. 1991;25(7-8):713-715. 37. Lutsar I, McCracken GH, Jr., Friedland IR. Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis. 1998;27(5):1117-1127. 38. Cooper G, Given D. Pharmacokinetics of vancomycin. Vancomycin: a comprehensive review of 30 years clinical experience. San Diego: Park Row Publishers. 1986;30:23-38. 39. Albanese J, Leone M, Bruguerolle B, Ayem ML, Lacarelle B, Martin C. Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob Agents Chemother. 2000;44(5):1356-1358. 40. Wang Q, Shi Z, Wang J, Shi G, Wang S, Zhou J. Postoperatively administered vancomycin reaches therapeutic concentration in the cerebral spinal fluid of neurosurgical patients. Surgical neurology. 2008;69(2):126-129. 41. Golper TA, Noonan HM, Elzinga L, et al. Vancomycin pharmacokinetics, renal handling, and nonrenal clearances in normal human subjects. Clin Pharmacol Ther. 1988;43(5):565-570. 42. Moellering RC, Jr., Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Ann Intern Med. 1981;94(3):343-346. 43. Rybak MJ, Boike SC. Individualized adjustment of vancomycin dosage: comparison with two dosage nomograms. Drug Intell Clin Pharm. 1986;20(1):64-68. 44. Nielsen HE, Hansen HE, Korsager B, Skov PE. Renal excretion of vancomycin in kidney disease. Acta Med Scand. 1975;197(4):261-264. 45. Krogstad DJ, Moellering RC, Jr., Greenblatt DJ. Single-dose kinetics of intravenous vancomycin. J Clin Pharmacol. 1980;20(4 Pt 1):197-201. 46. Nivoche Y, Contrepois A, Cremieux AC, Carbon C. Vancomycin in rabbits: pharmacokinetics, extravascular diffusion, renal excretion and interactions with furosemide. J Pharmacol Exp Ther. 1982;222(1):237-240. 47. Geraci JE, Heilman FR, Nichols DR, Ross GT, Wellman WE. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Proc Staff Meet Mayo Clin. 1956;31(21):564-582. 48. Bauer L, Black D, Lill J. Vancomycin dosing in morbidly obese patients. European journal of clinical pharmacology. 1998;54(8):621-625. 49. Grace E. Altered vancomycin pharmacokinetics in obese and morbidly obese patients: what we have learned over the past 30 years. J Antimicrob Chemother. 2012;67(6):1305-1310. 50. Blouin RA, Bauer LA, Miller DD, Record KE, Griffen WO. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrobial agents and chemotherapy. 1982;21(4):575-580. 51. Dolton M, Xu H, Cheong E, et al. Vancomycin pharmacokinetics in patients with severe burn injuries. Burns. 2010;36(4):469-476. 52. Rybak MJ, Albrecht L, Berman J, Warbasse L, Svensson C. Vancomycin pharmacokinetics in burn patients and intravenous drug abusers. Antimicrobial agents and chemotherapy. 1990;34(5):792-795. 53. Burton ME. Applied pharmacokinetics & pharmacodynamics: Principles of therapeutic drug monitoring: Lippincott Williams & Wilkins; 2006. 54. Power BM, Forbes AM, van Heerden PV, Ilett KF. Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet. 1998;34(1):25-56. 55. Sunder-Plassmann G, Horl WH. A critical appraisal for definition of hyperfiltration. American Journal of Kidney Diseases. 2004;43(2):396-397. 56. Udy A, Boots R, Senthuran S, et al. Augmented creatinine clearance in traumatic brain injury. Anesth Analg. 2010;111(6):1505-1510. 57. Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J. Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet. 2010;49(1):1-16. 58. Llopis-Salvia P, Jimenez-Torres NV. Population pharmacokinetic parameters of vancomycin in critically ill patients. J Clin Pharm Ther. 2006;31(5):447-454. 59. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840-851. 60. Revilla N, Martin-Suarez A, Perez MP, Gonzalez FM, Fernandez de Gatta Mdel M. Vancomycin dosing assessment in intensive care unit patients based on a population pharmacokinetic/pharmacodynamic simulation. Br J Clin Pharmacol. 2010;70(2):201-212. 61. Scaglione F, Paraboni L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: setting appropriate dosing regimens. International journal of antimicrobial agents. 2008;32(4):294-301. e297. 62. Sawchuk RJ, Zaske DE. Pharmacokinetics of dosing regimens which utilize multiple intravenous infusions: gentamicin in burn patients. J Pharmacokinet Biopharm. 1976;4(2):183-195. 63. DiPiro J, Blouin R, Pruemer J. Concepts in Clinical Pharmacokinetics—A Self-Instructional Course, American Society of Hospital Pharmacists1988. 64. Siemens. DimensionR Clinical Chemistry System, FlexR reagent catridge Vancomycin. 2009. 65. Yang TY. Pharmacokinetics of Vancomycin in Neurosurgical Patients: Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University; 2011. 66. Rangel-Castilla L, Gopinath S, Robertson CS. Management of intracranial hypertension. Neurol Clin. 2008;26(2):521-541. 67. Kamel H, Navi BB, Nakagawa K, Hemphill JC, 3rd, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med. 2011;39(3):554-559. 68. Domino KB. Fluid management for the neurosurgical patient. ASA Refresher Courses in Anesthesiology. 1990;18:117-135. 69. Sabharwal N, Rao GS, Ali Z, Radhakrishnan M. Hemodynamic changes after administration of mannitol measured by a noninvasive cardiac output monitor. J Neurosurg Anesthesiol. 2009;21(3):248-252. 70. Udy AA, Varghese JM, Altukroni M, et al. Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142(1):30-39. 71. Lonsdale DO, Udy AA, Roberts JA, Lipman J. Antibacterial therapeutic drug monitoring in cerebrospinal fluid: difficulty in achieving adequate drug concentrations. J Neurosurg. 2013;118(2):297-301. 72. Moza K, McMenomey SO, Delashaw JB, Jr. Indications for cerebrospinal fluid drainage and avoidance of complications. Otolaryngol Clin North Am. 2005;38(4):577-582. 73. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41. 74. Levey A, Greene T, Kusek J, Beck G, Group MS. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol. 2000;11(Suppl 2):155. 75. Jehl F, Gallion C, Monteil H. High-performance liquid chromatography of antibiotics. Journal of chromatography. 1990;531:509-548. 76. Vila MMDC, Oliveira RMd, Goncalves MM, Tubino M. Analytical methods for vancomycin determination in biological fluids and in pharmaceuticals. Quimica Nova. 2007;30(2):395-399. 77. Commission BP, Council GM, Commission GBM. British pharmacopoeia. Vol 1: Her Majesty's Stationery Office; 2001. 78. XXIII UP. The United States Pharmacopeia1995. 79. Shibata N, Ishida M, Prasad YV, Gao W, Yoshikawa Y, Takada K. Highly sensitive quantification of vancomycin in plasma samples using liquid chromatography-tandem mass spectrometry and oral bioavailability in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;789(2):211-218. 80. Cass RT, Villa JS, Karr DE, Schmidt DE, Jr. Rapid bioanalysis of vancomycin in serum and urine by high-performance liquid chromatography tandem mass spectrometry using on-line sample extraction and parallel analytical columns. Rapid Commun Mass Spectrom. 2001;15(6):406-412. 81. Zhang T, Watson D, Azike C, et al. Determination of vancomycin in serum by liquid chromatography–high resolution full scan mass spectrometry. Journal of Chromatography B. 2007;857(2):352-356. 82. Jesus Valle MJd, Lopez FG, Navarro AS. Development and validation of an HPLC method for vancomycin and its application to a pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2008;48(3):835-839. 83. Ye G, Cai X, Wang B, et al. Simultaneous determination of vancomycin and ceftazidime in cerebrospinal fluid in craniotomy patients by high-performance liquid chromatography. Journal of pharmaceutical and biomedical analysis. 2008;48(3):860-865. 84. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care. 2013;17(1):R35. 85. Valdes ME, Landau SE, Shah DM, et al. Increased glomerular filtration rate following mannitol administration in man. J Surg Res. 1979;26(5):473-477. 86. Birt JK, Chandler MH. Using clinical data to determine vancomycin dosing parameters. Ther Drug Monit. 1990;12(2):206-209. 87. Sherwood L. Human physiology: from cells to systems: Thomson Brooks/Cole; 2012. 88. Braun A, Hammerle S, Suda K, et al. Cell cultures as tools in biopharmacy. Eur J Pharm Sci. 2000;11(2):S51-60. 89. Rapoport SI. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol. 2000;20(2):217-230. 90. Wang M, Etu J, Joshi S. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J Neurosurg Anesthesiol. 2007;19(4):249-256. 91. Perkins BA, Strausbaugh LJ. Effect of mannitol infusions into the internal carotid artery on entry of two antibiotics into the cerebrospinal fluid and brains of normal rabbits. Antimicrob Agents Chemother. 1983;24(3):339-342. 92. Strausbaugh LJ, Brinker GS. Effect of osmotic blood-brain barrier disruption on gentamicin penetration into the cerebrospinal fluid and brains of normal rabbits. Antimicrob Agents Chemother. 1983;24(2):147-150. 93. Seely JF, Dirks JH. Micropuncture study of hypertonic mannitol diuresis in the proximal and distal tubule of the dog kidney. Journal of Clinical Investigation. 1969;48(12):2330. 94. Guay DR, Vance-Bryan K, Gilliland S, Rodvold K, Rotschafer J. Comparison of vancomycin pharmacokinetics in hospitalized elderly and young patients using a Bayesian forecaster. J Clin Pharmacol. 1993;33(10):918-922. 95. Rodvold KA, Pryka RD, Garrison M, Rotschafer JC. Evaluation of a two-compartment Bayesian forecasting program for predicting vancomycin concentrations. Ther Drug Monit. 1989;11(3):269-275. 96. Rodvold KA, Rotschafer JC, Gilliland SS, Guay DR, Vance-Bryan K. Bayesian forecasting of serum vancomycin concentrations with non-steady-state sampling strategies. Ther Drug Monit. 1994;16(1):37-41. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17286 | - |
| dc.description.abstract | 研究背景與目的
萬古黴素在臨床上最重要地位在於methicillin-resistant Staphylococcus aureus (MRSA)感染的治療。為了避免治療失敗或是引起其他抗藥性菌種產生,治療過程維持萬古黴素的血清濃度高於目標值是很重要的。 過去的回溯性研究顯示台大醫院神經外科急重症病人具顯著較高的萬古黴素廓清率(Clv)。此研究導出之模型可預測此類病人的藥品動態學參數。此模型以Cockcroft-Gault公式估計之肌肝酸廓清率(ClCr)以及尿量/腦脊髓液引流量為變數,預測Clv;另以年齡和體重預測萬古黴素之分布體積(Vd)。 因此,本前瞻性研究欲驗證先前研究之藥品動態學模型,並描述此類病人萬古黴素排除的途徑。本研究也會以體外細胞模型評估高張力甘露醇(Mannitol)對於萬古黴素穿透運輸的影響。 研究方法 本研究針對神經外科急重症病人收案,共有16位使用萬古黴素治療且進行藥品血中濃度監測(TDM)的病人參與。我們收集病人的尿液檢體,而病人若有使用腦室外引流則同時收集腦脊髓液引流液檢體。我們建立了一個高效液相層析(HPLC)分析法,用以測量病人檢體之萬古黴素濃度。之後,可從TDM資訊和檢體濃度資訊計算出Clv和Vd的觀察值,並且使用迴歸分析及迴歸診斷檢驗其與Clv和Vd預測值之相關性。 另外,將Caco-2細胞種於transwell系統中使其形成cell monolayer。再以不同濃度之mannitol評估對萬古黴素穿透運輸的concentration-dependent影響。 研究結果 此研究收案之病人平均年齡66 ± 13歲,入院體重平均為61.6 ± 6.1公斤,TDM當日平均尿量4013 ± 1710 mL/day(65.12 ± 26.82 mL/kg/day)。TDM當日之平均血液肌肝酸(SCr)濃度為0.58 ± 0.21 mg/dL,且測量之肌肝酸廓清率(ClCr,measured)平均值為161.6 ± 73.7 mL/min。 24小時內經尿液排除之萬古黴素約佔100 %之總劑量。另外,萬古黴素之腎廓清率(Clv,renal)與萬古黴素之總廓清率(Clv,total)比值為0.99 ± 0.10,且兩組數值具高相關性(Pearson’s r = 0.9577)。因此後段的分析使用Clv,renal為標竿,進行先前研究之Clv模型驗證。初步的迴歸分析顯示低相關性(Pearson’s r皆低於0.5);然而將一個極值排除後,觀察到整體相關性提升,而迴歸分析則顯示以ClCr模型預測之Clv具最佳的預測性(Pearson’s r = 0.8344)。另外,模型預測之Vd與觀察之Vd具低相關性(Pearson’s r = 0.2912)。 我們也針對萬古黴素之排除路徑進行研究。24小時內經腦脊髓液引流液所排除的萬古黴素量極低(與藥品劑量比值為1.16 x 10-4),且萬古黴素具低腦脊髓穿透度(18.6 %)。腎排除為主要途徑,我們認為其主要機轉是經由腎絲球過濾排除,因為ClCr,measured可解釋高達70 % 之 Clv,renal變異。 至於細胞實驗的結果,我們觀察到高張mannitol會造成Caco-2 cell monolayer完整性的破壞,進而增加萬古黴素之穿透。 結論 本研究收案之病人具高尿量、高腎廓清率之特性,且這樣的特性與高Clv具高度關連性。此研究發現神經外科急重症病人之Clv可藉由ClCr預測。再者,我們可以使用預測之Clv計算更適當的給藥劑量,以達更好的治療效果。 | zh_TW |
| dc.description.abstract | Background and Objective
Vancomycin plays an important role in the treatment of methicillin-resistant Staphylococcus aureus (MRSA). To avoid treatment failure and development of resistant strains, it is prudent to keep vancomycin serum levels above the target trough level during therapy. In the past, a retrospective study had shown neurosurgical intensive care (NSICU) patients of our institution had significantly elevated vancomycin drug clearance (Clv). The same study derived pharmacokinetic models using Cockcroft Gault estimated creatinine clearance (ClCr) and urine output (UO) /cerebrospinal fluid (CSF) drainage to predict Clv; also using age and body weight to predict vancomycin volume of distribution (Vd) for this population of patients. Therefore, it is the intent of this prospective study to validate the preliminary pharmacokinetic models; and to describe the route of vancomycin clearance. We are also interested in assessing the effect of hypertonic mannitol on vancomycin transport using an in vitro cellular model. Methods In this study, we prospectively recruited 16 NSICU patients receiving vancomycin therapy, and undergoing therapeutic drug monitoring (TDM). We also collected patient’s urine samples, and CSF sample if the patient received external CSF drainage during vancomycin therapy. We established a high-performance liquid chromatography (HPLC) assay to analyze urine and CSF vancomycin concentrations. Thereafter, we calculated observed Clv and Vd from TDM data and patient sample concentration data; by comparing observed and predicted Clv and Vd, we could validate preliminary models. A Caco-2 cell transwell system was used to assess the concentration-dependent effect of mannitol on vancomycin transport across epithelial cell. Results The NSICU patients recruited in this study had a mean age of 66 ± 13 years old, mean body weight on admission was 61.6 ± 6.1 kg, the mean urine output on TDM day was 4013 ± 1710 mL/day (65.12 ± 26.82 mL/kg/day). The average SCr on TDM day was 0.58 ± 0.21 mg/dL, with corresponding measured creatinine clearance (ClCr,measured) of 161.6 ± 73.7 mL/min. Vancomycin excreted from urine over 24 hours was found to contribute to about 100 % of given dose. Additionally, vancomycin renal clearance (Clv,renal) ratio to vancomycin total clearance (Clv,total) was 0.99 ± 0.10, with high correlation (Pearson’s r = 0.9577). Therefore, Clv,renal was used as a gold standard to validate the Clv model. Initial validation found low correlation (Pearson’s r less than 0.5); however, after exclusion of an outlier, the ClCr model showed best prediction of Clv (Pearson’s r = 0.8344). On the other hand, the Vd model from preliminary study showed suboptimal predictability (Pearson’s r = 0.2912). We also investigated the pathway of vancomycin excretion from the body. External CSF drainage had very little contribution to Clv (ratio to dose 1.16 x 10-4), and low CSF penetration was observed (18.6 %). Renal clearance was found to be the major route of excretion; and about 70 % of Clv variability could be explained by ClCr,measured, indicating glomerular filtration as the primary excretion pathway. From the Caco-2 cell in vitro data, we found that hypertonic mannitol could disrupt the integrity of Caco-2 monolayer, resulting in up to 9-fold increase of vancomycin transport from donor to acceptor compartment. Conclusion The NSICU patients of this study were presented with high urine output and enhanced renal clearance, which was associated with elevated Clv. The Clv of NSICU patients in our institution was best predicted by ClCr. We could then use the predicted Clv to calculate appropriate daily maintenance dose for NSICU patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:05:00Z (GMT). No. of bitstreams: 1 ntu-102-R00423008-1.pdf: 1692403 bytes, checksum: c4eb3bacaf580a6dae3184668e78a351 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 III Abstract V Table of Contents VIII Figures XII Tables XIII Abbreviations XIV Chapter One Introduction 1 1.1 Vancomycin basic properties 1 1.1.1 Pharmacodynamics of vancomycin 1 1.1.2 Pharmacokinetics of vancomycin 2 1.1.3 Factors effecting vancomycin pharmacokinetics 5 1.1.4 Vancomycin dosing protocol 8 1.1.5 Therapeutic drug monitoring 8 1.1.6 Analytical procedures for vancomycin 9 1.2 Neurosurgery and vancomycin pharmacokinetics 10 1.2.1 Fluid status and increased urine output 11 1.2.2 Elevated renal clearance 11 1.2.3 Cerebrospinal fluid drainage 12 1.2.4 Preliminary study of vancomycin pharmacokinetics in neurosurgical ICU patients 13 Chapter Two Study Objectives 14 Chapter Three Materials and Methods 16 3.1 Materials 16 3.1.1 Concentration determination in patient sample 16 3.1.2 Cell culture 16 3.1.3 Transport study 17 3.2 Study subjects and study design 17 3.2.1 Patient population 17 3.2.2 Inclusion and exclusion criteria 18 3.3 Data collection 19 3.3.1 Recorded information 19 3.3.2 Derived information 19 3.4 Formula 20 3.5 Determination of vancomycin concentration 23 3.5.1 Patient sample collection 23 3.5.2 Standard solution preparation 23 3.5.3 Sample preparation 24 3.5.4 High Performance Liquid Chromatography (HPLC) conditions 25 3.5.5 Concentration determination in patient sample 26 3.5.6 Validation of HPLC assay 26 3.6 Statistical Analysis 27 3.7 Cell culture 28 3.8 Concentration-dependent effect of mannitol on vancomycin transport in Caco-2 cell transwell system 28 Chapter Four Results 30 4.1 Patient recruitment 30 4.2 HPLC-UV assay development 30 4.2.1 Assay condition determination and building calibration curve 30 4.2.2 Assay validation 30 4.3 Patient characteristics 31 4.3.1 Demographics 31 4.3.2 Contribution of urine and CSF route to vancomycin clearance 32 4.3.3 Vancomycin pharmacokinetics 33 4.4 Validation of preliminary pharmacokinetic models 34 4.4.1 Clearance model 34 4.4.2 Volume of distribution model 35 4.5 Relationship of vancomycin clearance and renal function 35 4.6 Applicability of pharmacokinetic models 35 4.7 The effect of mannitol on vancomycin transport in an in vitro cellular model 36 4.7.1 Apical to basolateral transport 37 4.7.2 Basolateral to apical transport 38 Chapter Five Discussion 40 5.1 HPLC assay development 40 5.1.1 Applicability of HPLC assay to pharmacokinetic study 40 5.2 Patient characteristics 41 5.2.1 Large urine output and enhanced renal clearance 41 5.2.2 Renal clearance had high contribution to total drug clearance 43 5.3 Validation of preliminary pharmacokinetic models 43 5.3.1 ClCr and UO model showed best prediction for vancomycin clearance 43 5.3.2 Drain model showed less predicting ability for vancomycin clearance 45 5.3.3 Volume of distribution model showed suboptimal prediction 45 5.4 Relationship of vancomycin clearance and renal function 46 5.4.1 Mechanism of vancomycin clearance 46 5.4.2 Vancomycin clearance correlation with estimated renal clearance 46 5.5 Model calculated dose better than original protocol 47 5.6 In vitro transport study 48 5.6.1 High concentration mannitol could significantly decrease TEER value of Caco-2 cell monolayer 48 5.6.2 High concentration mannitol could increase the permeability of small, hydrophilic molecules in Caco-2 cell transwell system 49 5.7 Study significance and limitations 50 Chapter Six Conclusion 51 References 89 | |
| dc.language.iso | en | |
| dc.title | 神經外科急重症病人之藥品動態學研究—以萬古黴素為例 | zh_TW |
| dc.title | Pharmacokinetic Study in Neurosurgical ICU Patients – Using Vancomcyin as an Example | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林慧玲,王國川,溫明芳,許光陽 | |
| dc.subject.keyword | 萬古黴素,藥品動態學,神經外科急重症, | zh_TW |
| dc.subject.keyword | Vancomycin,Pharmacokinetics,Neurosurgical intensive care, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
