請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17277完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇銘嘉(Ming-Jai Su) | |
| dc.contributor.author | Ching-I Wang | en |
| dc.contributor.author | 王靜宜 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:04:31Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | 1. G.S. Martin, D.M. Mannino, S. Eaton, et al., The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med, 2003. 348(16): p. 1546-54.
2. D.C. Angus, W.T. Linde-Zwirble, J. Lidicker, et al., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med, 2001. 29(7): p. 1303-10. 3. A. Lever and I. Mackenzie, Sepsis: definition, epidemiology, and diagnosis. BMJ, 2007. 335(7625): p. 879-83. 4. E. Silva, H. Passos Rda, M.B. Ferri, et al., Sepsis: from bench to bedside. Clinics (Sao Paulo), 2008. 63(1): p. 109-20. 5. J.A. Russell, J. Singer, G.R. Bernard, et al., Changing pattern of organ dysfunction in early human sepsis is related to mortality. Crit Care Med, 2000. 28(10): p. 3405-11. 6. D. Annane, P. Aegerter, M.C. Jars-Guincestre, et al., Current epidemiology of septic shock: the CUB-Rea Network. Am J Respir Crit Care Med, 2003. 168(2): p. 165-72. 7. G.R. Bernard, J.L. Vincent, P.F. Laterre, et al., Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med, 2001. 344(10): p. 699-709. 8. C. Alberti, C. Brun-Buisson, H. Burchardi, et al., Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med, 2002. 28(2): p. 108-21. 9. D. Annane, E. Bellissant, and J.M. Cavaillon, Septic shock. Lancet, 2005. 365(9453): p. 63-78. 10. E.S. Van Amersfoort, T.J. Van Berkel, and J. Kuiper, Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev, 2003. 16(3): p. 379-414. 11. C.J. Fernandes, Jr., N. Akamine, and E. Knobel, Myocardial depression in sepsis. Shock, 2008. 30 Suppl 1: p. 14-7. 12. J.E. Parrillo, M.M. Parker, C. Natanson, et al., Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med, 1990. 113(3): p. 227-42. 13. J.E. Parrillo, C. Burch, J.H. Shelhamer, et al., A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest, 1985. 76(4): p. 1539-53. 14. C.J. Fernandes, Jr. and M.S. de Assuncao, Myocardial dysfunction in sepsis: a large, unsolved puzzle. Crit Care Res Pract, 2012. 2012: p. 896430. 15. C. Natanson, P.W. Eichenholz, R.L. Danner, et al., Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med, 1989. 169(3): p. 823-32. 16. B.S. Cain, D.R. Meldrum, C.A. Dinarello, et al., Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function. Crit Care Med, 1999. 27(7): p. 1309-18. 17. T. Turbeville and J. Horton, Burn trauma sitmulates cardiomyocyte production of TNFα- and nitric oxide(NO). Shock, 1998. 9: p. 8. 18. P.B. Massion, O. Feron, C. Dessy, et al., Nitric oxide and cardiac function: ten years after, and continuing. Circ Res, 2003. 93(5): p. 388-98. 19. D. Dawson, C.A. Lygate, M.H. Zhang, et al., nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation, 2005. 112(24): p. 3729-37. 20. J.C. Preiser, H. Zhang, B. Vray, et al., Time course of inducible nitric oxide synthase activity following endotoxin administration in dogs. Nitric Oxide, 2001. 5(2): p. 208-11. 21. F.H. Khadour, D. Panas, P. Ferdinandy, et al., Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am J Physiol Heart Circ Physiol, 2002. 283(3): p. H1108-15. 22. R. Ullrich, M. Scherrer-Crosbie, K.D. Bloch, et al., Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation, 2000. 102(12): p. 1440-6. 23. F. Ichinose, E.S. Buys, T.G. Neilan, et al., Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. Circ Res, 2007. 100(1): p. 130-9. 24. L. Xu, J.P. Eu, G. Meissner, et al., Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 1998. 279(5348): p. 234-7. 25. T. Rassaf, L.W. Poll, P. Brouzos, et al., Positive effects of nitric oxide on left ventricular function in humans. Eur Heart J, 2006. 27(14): p. 1699-705. 26. M. Kelm, S. Schafer, R. Dahmann, et al., Nitric oxide induced contractile dysfunction is related to a reduction in myocardial energy generation. Cardiovasc Res, 1997. 36(2): p. 185-94. 27. P. Pacher, J.S. Beckman, and L. Liaudet, Nitric oxide and peroxynitrite in health and disease. Physiol Rev, 2007. 87(1): p. 315-424. 28. H. Kawaguchi, W.S. Shin, Y. Wang, et al., In vivo gene transfection of human endothelial cell nitric oxide synthase in cardiomyocytes causes apoptosis-like cell death. Identification using Sendai virus-coated liposomes. Circulation, 1997. 95(10): p. 2441-7. 29. P. Ferdinandy, H. Danial, I. Ambrus, et al., Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res, 2000. 87(3): p. 241-7. 30. A.P. West, I.E. Brodsky, C. Rahner, et al., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011. 472(7344): p. 476-80. 31. D. Brealey, S. Karyampudi, T.S. Jacques, et al., Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol, 2004. 286(3): p. R491-7. 32. E.D. Crouser, M.W. Julian, D.V. Blaho, et al., Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med, 2002. 30(2): p. 276-84. 33. I. Vanhorebeek, R. De Vos, D. Mesotten, et al., Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet, 2005. 365(9453): p. 53-9. 34. H.F. Galley, Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth, 2011. 107(1): p. 57-64. 35. L. Smeding, F.B. Plotz, A.B. Groeneveld, et al., Structural changes of the heart during severe sepsis or septic shock. Shock, 2012. 37(5): p. 449-56. 36. H.D. Reines, P.V. Halushka, J.A. Cook, et al., Plasma thromboxane concentrations are raised in patients dying with septic shock. Lancet, 1982. 2(8291): p. 174-5. 37. R.P. Dellinger, M.M. Levy, A. Rhodes, et al., Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med, 2013. 39(2): p. 165-228. 38. J.W. Christman, R.T. Sadikot, and T.S. Blackwell, The role of nuclear factor-kappa B in pulmonary diseases. Chest, 2000. 117(5): p. 1482-7. 39. H. Freise, U.B. Bruckner, and H.U. Spiegel, Animal models of sepsis. J Invest Surg, 2001. 14(4): p. 195-212. 40. M.J. Su, Y.M. Chang, J.F. Chi, et al., Thaliporphine, a positive inotropic agent with a negative chronotropic action. Eur J Pharmacol, 1994. 254(1-2): p. 141-50. 41. T.C. Chi, S.S. Lee, and M.J. Su, Antihyperglycemic effect of aporphines and their derivatives in normal and diabetic rats. Planta Med, 2006. 72(13): p. 1175-80. 42. L.-M. Hung, S.-S. Lee, J.-K. Chen, et al., Thaliporphine protects ischemic and ischemic-reperfused rat hearts via an NO-dependent mechanism. Drug Development Research, 2001. 52(3): p. 446-453. 43. C.W. Chiao, S.S. Lee, C.C. Wu, et al., Thaliporphine increases survival rate and attenuates multiple organ injury in LPS-induced endotoxaemia. Naunyn Schmiedebergs Arch Pharmacol, 2005. 371(1): p. 34-43. 44. J.A. Russell, Management of sepsis. N Engl J Med, 2006. 355(16): p. 1699-713. 45. M.R. Pinsky, Organ-specific therapy in critical illness: interfacing molecular mechanisms with physiological interventions. J Crit Care, 1996. 11(2): p. 95-107. 46. N.C. Riedemann, R.F. Guo, and P.A. Ward, Novel strategies for the treatment of sepsis. Nat Med, 2003. 9(5): p. 517-24. 47. M.W. Merx and C. Weber, Sepsis and the heart. Circulation, 2007. 116(7): p. 793-802. 48. H.C. Ku, W.P. Chen, and M.J. Su, DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol, 2011. 384(2): p. 197-207. 49. B.J. Heesen, R.S. Hotchkiss, and I.E. Karl, Sepsis decreases phenylephrine- and KCl-induced aortic ring contraction and decreases the frequency of oscillations in active wall tension. Shock, 1994. 2(2): p. 106-12. 50. M. Bucher, F. Kees, K. Taeger, et al., Cytokines down-regulate alpha1-adrenergic receptor expression during endotoxemia. Crit Care Med, 2003. 31(2): p. 566-71. 51. A.V. Araujo, C.Z. Ferezin, C. Pereira Ade, et al., Augmented nitric oxide production and up-regulation of endothelial nitric oxide synthase during cecal ligation and perforation. Nitric Oxide, 2012. 27(1): p. 59-66. 52. K.P. Rim, K. Kim, Y.H. Jo, et al., Effect of therapeutic hypothermia according to severity of sepsis in a septic rat model. Cytokine, 2012. 60(3): p. 755-61. 53. J.M. Cavaillon, M. Adib-Conquy, C. Fitting, et al., Cytokine cascade in sepsis. Scand J Infect Dis, 2003. 35(9): p. 535-44. 54. J.M. Cavaillon and M. Adib-Conquy, Monocytes/macrophages and sepsis. Crit Care Med, 2005. 33(12 Suppl): p. S506-9. 55. R. Mossner and K.P. Lesch, Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav Immun, 1998. 12(4): p. 249-71. 56. K. Racke, A. Reimann, H. Schworer, et al., Regulation of 5-HT release from enterochromaffin cells. Behav Brain Res, 1996. 73(1-2): p. 83-7. 57. J. Gordon and N.M. Barnes, Lymphocytes transport serotonin and dopamine: agony or ecstasy? Trends Immunol, 2003. 24(8): p. 438-43. 58. E.J. Meredith, A. Chamba, M.J. Holder, et al., Close encounters of the monoamine kind: immune cells betray their nervous disposition. Immunology, 2005. 115(3): p. 289-95. 59. G.P. Ahern, 5-HT and the immune system. Curr Opin Pharmacol, 2011. 11(1): p. 29-33. 60. T. Nishiyama, Acute effects of sarpogrelate, a 5-HT2A receptor antagonist on cytokine production in endotoxin shock model of rats. Eur J Pharmacol, 2009. 614(1-3): p. 122-7. 61. C. Liu, G.F. Zhang, S.W. Song, et al., Effects of ketanserin on endotoxic shock and baroreflex function in rodents. J Infect Dis, 2011. 204(10): p. 1605-12. 62. Y.C. Lo, C.C. Wang, K.P. Shen, et al., Urgosedin inhibits hypotension, hypoglycemia, and pro-inflammatory mediators induced by lipopolysaccharide. J Cardiovasc Pharmacol, 2004. 44(3): p. 363-71. 63. D. Centurion, E. Glusa, A. Sanchez-Lopez, et al., 5-HT7, but not 5-HT2B, receptors mediate hypotension in vagosympathectomized rats. Eur J Pharmacol, 2004. 502(3): p. 239-42. 64. T. Durk, E. Panther, T. Muller, et al., 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol, 2005. 17(5): p. 599-606. 65. J.J. Kim, B.W. Bridle, J.E. Ghia, et al., Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation. J Immunol, 2013. 190(9): p. 4795-804. 66. A. Albayrak, Z. Halici, E. Cadirci, et al., Inflammation and peripheral 5-HT receptors: The role of 5-HT receptors in carrageenan induced inflammation in rats. Eur J Pharmacol, 2013. 67. M. de las Casas-Engel, A. Dominguez-Soto, E. Sierra-Filardi, et al., Serotonin skews human macrophage polarization through HTR2B and HTR7. J Immunol, 2013. 190(5): p. 2301-10. 68. P.R. Buskohl, M.L. Sun, R.P. Thompson, et al., Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves. PLoS One, 2012. 7(8): p. e42527. 69. F. Soga, N. Katoh, T. Inoue, et al., Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol, 2007. 127(8): p. 1947-55. 70. I. Cloez-Tayarani, A.F. Petit-Bertron, H.D. Venters, et al., Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: involvement of 5-hydroxytryptamine2A receptors. Int Immunol, 2003. 15(2): p. 233-40. 71. W.G. Deng, S.T. Tang, H.P. Tseng, et al., Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood, 2006. 108(2): p. 518-24. 72. M.A. Tucci, J. Woodall, Jr., M. Asfour, et al., The effects of serotonin on activated macrophages - biomed 2013. Biomed Sci Instrum, 2013. 49: p. 267-73. 73. M. Idzko, E. Panther, C. Stratz, et al., The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol, 2004. 172(10): p. 6011-9. 74. T.A. Johnson, J. Sohn, A.E. Ward, et al., (+)-Altholactone exhibits broad spectrum immune modulating activity by inhibiting the activation of pro-inflammatory cytokines in RAW 264.7 cell lines. Bioorg Med Chem, 2013. 21(14): p. 4358-64. 75. H.H. Park, M.J. Kim, Y. Li, et al., Britanin suppresses LPS-induced nitric oxide, PGE2 and cytokine production via NF-kappaB and MAPK inactivation in RAW 264.7 cells. Int Immunopharmacol, 2013. 15(2): p. 296-302. 76. C.C. Hsu, J.C. Lien, C.W. Chang, et al., Yuwen02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NFkB and MAPK activation. Biochem Pharmacol, 2013. 85(3): p. 385-95. 77. Z. Wang, J.H. Holthoff, K.A. Seely, et al., Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol, 2012. 180(2): p. 505-16. 78. P. Eyenga, F. Lhuillier, J. Morel, et al., Time course of liver nitric oxide concentration in early septic shock by cecal ligation and puncture in rats. Nitric Oxide, 2010. 23(3): p. 194-8. 79. A.M. van de Sandt, R. Windler, A. Godecke, et al., Endothelial NOS (NOS3) impairs myocardial function in developing sepsis. Basic Res Cardiol, 2013. 108(2): p. 330. 80. W. Tao, D.J. Deyo, D.L. Traber, et al., Hemodynamic and cardiac contractile function during sepsis caused by cecal ligation and puncture in mice. Shock, 2004. 21(1): p. 31-7. 81. A. Cauwels, E. Rogge, B. Janssen, et al., Reactive oxygen species and small-conductance calcium-dependent potassium channels are key mediators of inflammation-induced hypotension and shock. J Mol Med (Berl), 2010. 88(9): p. 921-30. 82. L.V. Borovikova, S. Ivanova, M. Zhang, et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000. 405(6785): p. 458-62. 83. A. Matsuda, A. Jacob, R. Wu, et al., Novel therapeutic targets for sepsis: regulation of exaggerated inflammatory responses. J Nippon Med Sch, 2012. 79(1): p. 4-18. 84. N. Xue, H. Liang, H. Yao, et al., The role of spleen in vagus nerve stimulation for treatment against septic shock in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2011. 23(5): p. 263-6. 85. K.D. Fairchild, V. Srinivasan, J.R. Moorman, et al., Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am J Physiol Regul Integr Comp Physiol, 2011. 300(2): p. R330-9. 86. A. Serrano-Gomez, J.P. Thompson, and D.G. Lambert, Nociceptin/orphanin FQ in inflammation and sepsis. Br J Anaesth, 2011. 106(1): p. 6-12. 87. S.J. Chen, S.Y. Li, C.C. Shih, et al., NO contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats. Shock, 2010. 33(5): p. 473-8. 88. N. Nin, M. El-Assar, C. Sanchez, et al., Vascular dysfunction in sepsis: effects of the peroxynitrite decomposition catalyst MnTMPyP. Shock, 2011. 36(2): p. 156-61. 89. A.K. Coskun, M. Yigiter, A. Oral, et al., The effects of montelukast on antioxidant enzymes and proinflammatory cytokines on the heart, liver, lungs, and kidneys in a rat model of cecal ligation and puncture-induced sepsis. ScientificWorldJournal, 2011. 11: p. 1341-56. 90. M. Seija, C. Baccino, N. Nin, et al., Role of peroxynitrite in sepsis-induced acute kidney injury in an experimental model of sepsis in rats. Shock, 2012. 38(4): p. 403-10. 91. J.A. Buras, B. Holzmann, and M. Sitkovsky, Animal models of sepsis: setting the stage. Nat Rev Drug Discov, 2005. 4(10): p. 854-65. 92. G. Booth, T.J. Stalker, A.M. Lefer, et al., Elevated ambient glucose induces acute inflammatory events in the microvasculature: effects of insulin. Am J Physiol Endocrinol Metab, 2001. 280(6): p. E848-56. 93. I. Vanhorebeek, L. Langouche, and G. Van den Berghe, Modulating the endocrine response in sepsis: insulin and blood glucose control. Novartis Found Symp, 2007. 280: p. 204-15; discussion 215-22. 94. G. Van den Berghe, Insulin therapy for the critically ill patient. Clin Cornerstone, 2003. 5(2): p. 56-63. 95. J.H. Siegel, Relations between circulatory and metabolic changes in sepsis. Annu Rev Med, 1981. 32: p. 175-94. 96. S.R. Maitra, M.M. Wojnar, and C.H. Lang, Alterations in tissue glucose uptake during the hyperglycemic and hypoglycemic phases of sepsis. Shock, 2000. 13(5): p. 379-85. 97. R. Sordi, D. Fernandes, B.T. Heckert, et al., Early potassium channel blockade improves sepsis-induced organ damage and cardiovascular dysfunction. Br J Pharmacol, 2011. 163(6): p. 1289-301. 98. M.Y. Wang, L.M. Ren, Z.J. Du, et al., Urethane-induced hyperglycemia. Acta Pharmacol Sin, 2000. 21(3): p. 271-5. 99. K. Krzemien and L. Lipowska-Zabawska, Urethane-induced hyperglycemia in rats. Acta Physiol Pol, 1976. 27(4): p. 369-76. 100. F. Chaouloff, D. Laude, and V. Baudrie, Ganglionic transmission is a prerequisite for the adrenaline-releasing and hyperglycemic effects of 8-OH-DPAT. Eur J Pharmacol, 1990. 185(1): p. 11-8. 101. J. Yamada, Y. Sugimoto, T. Yoshikawa, et al., The involvement of the peripheral 5-HT2A receptor in peripherally administered serotonin-induced hyperglycemia in rats. Life Sci, 1995. 57(8): p. 819-25. 102. M.C. Moore, K. Kimura, H. Shibata, et al., Portal 5-hydroxytryptophan infusion enhances glucose disposal in conscious dogs. Am J Physiol Endocrinol Metab, 2005. 289(2): p. E225-31. 103. E. Hajduch, F. Rencurel, A. Balendran, et al., Serotonin (5-Hydroxytryptamine), a novel regulator of glucose transport in rat skeletal muscle. J Biol Chem, 1999. 274(19): p. 13563-8. 104. H. Watanabe, D. Akasaka, H. Ogasawara, et al., Peripheral serotonin enhances lipid metabolism by accelerating bile acid turnover. Endocrinology, 2010. 151(10): p. 4776-86. 105. X.J. Pan and H. Sun, Alterations in myocardial function in early stage of sepsis in rabbits. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2004. 16(6): p. 355-7. 106. M. Gao, T. Ha, X. Zhang, et al., The Toll-like receptor 9 ligand, CpG oligodeoxynucleotide, attenuates cardiac dysfunction in polymicrobial sepsis, involving activation of both phosphoinositide 3 kinase/Akt and extracellular-signal-related kinase signaling. J Infect Dis, 2013. 207(9): p. 1471-9. 107. F.Z. Wang, L. Jing, J. Chen, et al., [Role of macrophage migration inhibitory factor in septic shock-induced cardiovascular dysfunction: experiment with rats]. Zhonghua Yi Xue Za Zhi, 2007. 87(11): p. 768-73. 108. J.L. Balligand, D. Ungureanu, R.A. Kelly, et al., Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest, 1993. 91(5): p. 2314-9. 109. B. Stein, P. Frank, W. Schmitz, et al., Endotoxin and cytokines induce direct cardiodepressive effects in mammalian cardiomyocytes via induction of nitric oxide synthase. J Mol Cell Cardiol, 1996. 28(8): p. 1631-9. 110. L.H. Guo, C. Yang, L. Wang, et al., Effects of tetramethylpyrazine on cardiac function and mortality rate in septic rats. Chin J Integr Med, 2012. 18(8): p. 610-5. 111. E.M. Feng, H. Sun, and Y.Z. Xia, Effects of hydrocortisone on myocardial function in early stage of sepsis in rabbits. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2009. 21(12): p. 719-21. 112. R.D. Goldfarb, J.W. Ortegel, J.E. Parrillo, et al., TAKEDA-143242 increased survival via reduced cytokines in porcine peritonitis. J Surg Res, 2011. 166(2): p. e165-73. 113. H. Yuan, C.N. Perry, C. Huang, et al., LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol, 2009. 296(2): p. H470-9. 114. K. Matsuno, K. Iwata, M. Matsumoto, et al., NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis. Free Radic Biol Med, 2012. 53(9): p. 1718-28. 115. P. Zhao, J. Zhang, X. Chu, et al., Cardiac metallothionein overexpression improves cardiac contractile function and attenuates oxidative stress in lipopolysaccharide-treated mice. Zhonghua Xin Xue Guan Bing Za Zhi, 2011. 39(8): p. 711-6. 116. S. Turdi, X. Han, A.F. Huff, et al., Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy. Free Radic Biol Med, 2012. 53(6): p. 1327-38. 117. H. Sebai, M. Sani, E. Aouani, et al., Cardioprotective effect of resveratrol on lipopolysaccharide-induced oxidative stress in rat. Drug Chem Toxicol, 2011. 34(2): p. 146-50. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17277 | - |
| dc.description.abstract | CYY054c已知是可減少內毒素引發小鼠死亡的化合物,本實驗研究目的為探討此化合物在LPS刺激下,對RAW264.7細胞株反應之影響,並評估CYY054c對盲腸結紮穿刺手術(cecal ligation and puncture, CLP)誘導之敗血症病鼠心臟功能是否有保護作用。
LPS (100 ng/ml)處理下,誘導RAW264.7細胞株產生ROS、IL-1β、IL-6、IL-10和TNF-α。LPS同樣也使細胞產生COX-2與iNOS蛋白,並造成ERK-1/2磷酸化增加。低劑量serotonin (0.03 μM)可抑制LPS引起之IL-1β分泌,對其他LPS誘導產生的cytokine則沒有顯著影響。低濃度serotonin減少LPS誘導之IL-1β生成的情況,在提高serotonin濃度至0.1、0.3 及1 μM後會消失,而仍然不影響其他原先不受serotonin調控的cytokine之生成量。0.1 μM 5-HT7 受體拮抗劑sb269970存在下會減少LPS誘導之IL-1β 與TNF-α生成,然而sb269970卻會增強LPS誘導之IL-10的生成量。此外,CYY054c在0.03和0.3 μ M濃度下也可產生與sb269970類似的結果,即分別降低LPS刺激下所引起TNF-α與 IL-1β的分泌,並增加LPS誘導之IL-10生成。同時0.03 μM CYY054c 可抑制LPS所誘發COX-2和iNOS表現及ROS製造。為了探討5-HT7 受體,在LPS刺激下對RAW264.7 細胞株產生調控反應的角色為何,以西方墨點法得知,不論是serotonin (1 μM) , sb269970 (0.1 μM), 或CYY054c (0.03 μM)單獨存在均不會影響5-HT7 受體表現,在與LPS合併給予時亦不會影響LPS減少5-HT7 受體之作用。 另一方面,敗血性休克的高死亡率可能與心臟功能受損有關,先前研究中,在以靜脈注射內毒素誘導敗血症之大鼠中,CYY054c可以減少血漿中乳酸堆積,並且可降低發炎性細胞激素的產生。為了進一步模擬臨床上因感染而演變成敗血症的情況,本實驗所使用之敗血性休克動物模式為利用盲腸結紮穿刺手術,使動物因多重菌種感染而引發腹膜炎。實驗將Sprague-Dawley大鼠分為三種組別,分別為sham、CLP、與CLP+CYY054c (300 μg/kg/hr, i.p)組,至手術後六小時期間,藉由頸動脈插管記錄大鼠血壓及心跳速率,之後利用pressure-volume (PV) Loop導管監測心室功能相關參數。CLP手術組造成明顯低血壓、對phenylephrine (15 μg/kg ,i.v.)血管收縮劑反應性減少、高血糖、血漿blood urea nitrogen (BUN) 及creatinine濃度上升的情形。此外,CLP手術組之left ventricular developed pressure (LVDP) 、maximal rise/fall velocity of ventricular pressure [dp/dt(max)、dp/dt(min)]、stroke work和 storke volume明顯減少,顯示在敗血症初期心臟功能已經受損。給予CYY054c治療可以降低敗血症病鼠死亡率,並改善dp/dt(max)及心臟收縮功能指標-壓力與心臟體積關係圖之斜率(end systolic pressure – volume relationship , ESPVR)。因此CYY054c提高敗血症病鼠存活率的原因可能藉由減少敗血症過度的發炎反應,因而改善心臟收縮功能而來,然而關於CYY054c影響敗血症動物的詳盡機轉仍然需要進一步的研究。 | zh_TW |
| dc.description.abstract | CYY054c was a synthetic compound known to ameliorate endotoxin-induced mortality in mice. The aim of the study was to examine the effect of the compound on LPS-induced response in RAW264.7 cells, and to access whether CYY054c could improve cardiac function in cecal ligation and puncture induced endotoxemic rats.
In cultured RAW264.7 cells, LPS (100 ng/ml) treatment resulted in an increase of ROS, IL-1β, IL-6, IL-10, and TNF-α production. LPS also induced COX-2 and iNOS expression and ERK-1/2 phosphorylation. Low concentration of serotonin (0.03 μM) inhibit LPS-stimulated IL-1β secretion without significant effect on the other LPS-stimulated cytokine secretions. The inhibition of LPS-stimulated IL-1β secretion disappeared when serotonin concentration was increased to 0.1, 0.3, and1 μM. Other LPS-stimulated cytokine secretions, however, were unaffected by serotonin. LPS –stimulated IL-1β and TNF-α secretions were reduced by 0.1 μM sb269970 (5-HT7 receptor antagonist). LPS –stimulated IL-10 secretion, however, was enhanced by sb 269970. Similar to sb269970, CYY054c at 0.03, 0.3 μM was found to inhibit LPS-stimulated TNF-α and IL-1β secretion, and enhance LPS-stimulated IL-10 production. Besides, 0.03 μM CYY054c could attenuate LPS-induced expression of COX-2 and iNOS at protein levels and LPS-stimulated ROS production. To characterize the role of 5-HT7¬ receptor in the modulation of LPS –stimulated response in RAW264.7 cells, the present study found that treatment of the cells with serotonin (1 μM) , sb269970 (0.1 μM), or CYY054c (0.03 μM) affected neither basal expression of 5-HT7¬ receptor nor the LPS-induced reduction of 5-HT7¬ receptors. On the other hand, septic shock has a high mortality rate, partially related to myocardial dysfunction. Previous study showed CYY054c could reduce plasma lactate content and pro-inflammatory cytokine release in endotoxemia rats. To mimic clinical infection status, septic shock models were performed by cecal ligation and puncture (CLP) to induce polymicrobial peritonitis. Sprague-Dawley rats were divided into three groups, including sham operated, CLP, and CLP plus CYY054c (300 μg/kg/hr, i.p.) group. Blood pressure and heart rate measurement were obtained through carotid artery cannulation until six hours after surgery. Following the ventricular dynamic parameters were monitored using an invasive pressure-volume (PV) loop technique. CLP surgery induced significant hypotension, vassel hyporesponsiveness to phenylephrine (15 μg/kg ,i.v.), hyperglycemia, and increased plasma BUN and creatinine levels. Furthermore, early stage of sepsis induced by CLP animal model impaired cardiac function, as shown by decreased left ventricular developed pressure (LVDP), maximal rise/fall velocity of ventricular pressure [dp/dt(max)、dp/dt(min)], stroke work, and stroke volume. Co-treatment of CYY054c could decrease mortality of septic rats, restore maximal rise velocity of ventricular pressure and the slope of end systolic pressure – volume relationship (ESPVR), which is the load –independent myocardia contractility index. In conclusion, the protective effect of CYY054c on reduction of mortality in septic rats might be attributed to the decreased inflammatory response, which thus preserves cardiovascular function. More detail mechanism of CYY054c on septic rats need to be further investigated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:04:31Z (GMT). No. of bitstreams: 1 ntu-102-R00443009-1.pdf: 5335635 bytes, checksum: 416bbbbf4ff4f1eb1a2bd2476cb410bc (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝………. II 中文摘要. III Abstract… V 縮寫對照表(Abbreviations) VII 目錄……. IX 第一章 緒論 1 第一節 敗血症之簡介 1 一、 定義與致病原 1 二、 敗血症病理機制 2 第二節 敗血症所引發之心臟功能不全 4 一、 myocardial depressor substance (MDS) 4 二、 Nitric Oxide (NO) 5 三、 Reactive oxygen species (ROS) 7 四、 其他機轉 9 第三節 敗血症治療策略 10 第四節 敗血症疾病動物模式 12 第五節 研究動機與目的 13 緒論附圖表 15 Table 1. Criteria for the diagnosis of SIRS, Sepsis, Shock, and organ dysfunction. 15 Table 2. Main pathogens in septic shock 16 Table 3. Pathways and Mediators of Sepsis, Potential Treatments, and Results of Randomized, Controlled Trials (RCTs). 17 Table 4. Inhibition constant (Ki) of CYY 054c 18 Figure 1. Schematic representation of the major elements of the progression of inflammation using remote interactions between immune effector cells and parenchymal cells as the model for remote organ-system dysfunction. 18 Figure 2. Excessive inflammatory mediator production during sepsis. 19 Figure 3. Potential mechanism for myocardial dysfunction during sepsis. 20 Figure 4. Autocrine and paracrine regulation of cardiomyocyte function by NO. 21 Figure 5. Force-NO relationship in the diseased heart. 22 Figure 6. Proposed mechanisms underlying structural changes of the heart during sepsis. 23 Figure 7. Chemical structure of thaliporphine (A) and CYY 054c (B) 24 Figure 8. Chemical structure of CYY 054c derivatives 25 第二章 實驗材料與方法 26 第一節 實驗試劑 26 第二節 細胞實驗 27 一、 老鼠巨噬細胞株(RAW 264.7)培養 27 二、 細胞實驗給藥方法 27 三、 Cytokine測定 28 四、 MTT 細胞存活檢測 29 五、 蛋白質萃取 29 六、 蛋白質定量 29 七、 西方墨點法(Western Blot) 30 八、 cAMP測定 31 九、 ROS測定 31 第三節 動物實驗 32 一、 動物來源及飼養條件 32 二、 大鼠組別與給藥方式 32 三、 血流動力學監測 32 四、 盲腸結紮穿刺手術(cecal ligation and puncture, CLP) 33 五、 樣本收集及處理 34 六、 大鼠實驗流程簡圖 34 七、 小鼠存活率試驗 35 八、 實驗數據分析與統計 35 第三章 實驗結果 36 第一節 serotonin及CYY054對RAW264.6細胞株存活率之影響 36 第二節 5-HT7 受體在RAW264.7細胞株的表現與功能性 36 第三節 serotonin對LPS誘導RAW264.7 細胞株生成細胞激素之影響 37 第四節 CYY054c對以LPS誘導RAW264.7 細胞株生成細胞激素之影響 38 第五節 CYY054c對以LPS誘導RAW264.7 細胞株生成ROS之影響 40 第六節 CYY054c對LPS所誘導COX-2及iNOS的影響 40 第七節 CYY054c對LPS所誘導ERK磷酸化的影響 41 第八節 CYY054c對盲腸結紮穿刺手術誘導敗血症動物實驗之血行力學參數的影響…. 41 第九節 大鼠盲腸結紮穿刺手術,術後同時腹腔注射300 μg/kg CYY054c對心臟功能參數的影響 43 第十節 CYY054c衍生物對以內毒素誘導敗血症病鼠存活率之影響 44 第四章 數據圖表與表格 47 Figure 1. Effects of serotonin and CYY054c on cell viability of RAW 264.7 cells. 47 Figure 2. Effects of CYY054c, sb269970, 5-HT,and LPS on RAW 264.7 cells. 49 Figure 3. Effect of 5-HT7 activation on LPS- induced cytokine production in RAW 264.7 cells. 50 Figure 4. Effects of CYY054c pretreatment on LPS- induced cytokines production in RAW 264.7 cells. 51 Figure 5. Effect of different reagents on LPS-induced ROS production in RAW 264.7 cells. 53 Figure 6. Effects of CYY054c on COX-2 and iNOS expression in RAW264.7 cells. 55 Figure 7. Effects of CYY054c on LPS-induced phosphorylation of ERK-1/2 in RAW 264.7 cells. 57 Figure 8. Hemodynamic parameters of CLP induced septic rats. 59 Figure 9. Biochemical parameters of rats subjected to CLP surgery. 60 Figure 10. Pressure – volume loops of hearts in sham, and CLP groups of vehicle 61 Figure 11. Cardiac function of CLP -induced septic rats. 62 Figure 12A. Effects of CYY909-1 on 3-day survival rate of endotoxin challenged mice. 63 Figure 12B. Effects of CYY902 on 3-day survival rate of endotoxin challenged mice. 64 Figure 12C. Effects of CYY877-3 on 3-day survival rate of endotoxin challenged mice. 65 Figure 12D. Effects of CYY893-3 on 3-day survival rate of endotoxin challenged mice. 66 Figure 12E. Effects of CYY560 on 3-day survival rate of endotoxin challenged mice. 67 Figure 12F. Effects of CYY557 on 3-day survival rate of endotoxin challenged mice. 68 Figure 12G. Effects of sb269970 on 3-day survival rate of endotoxin challenged mice. 69 第五章 討論 70 第一節 細胞實驗 70 第二節 動物實驗 74 第六章 結論 80 第七章 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.title | CYY054c藥物及其衍生物對敗血症動物及發炎反應之研究 | zh_TW |
| dc.title | The effect of CYY054c and its derivatives on sepsis-induced inflammatory response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李安生(An-Sheng Lee),陳文彬(Wen-Pin Chen),顏茂雄(Mao-Hsiung YEN) | |
| dc.subject.keyword | 敗血症,盲腸結紮穿刺手術,CYY054c,5-HT7,sb269970, | zh_TW |
| dc.subject.keyword | sepsis,CLP,CYY054c,5-HT7,sb269970, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
