請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17263完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹建和 | |
| dc.contributor.author | Chih-Hao Lai | en |
| dc.contributor.author | 賴志豪 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:03:46Z | - |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | [1] D. Zhang and X. Gong, 'Experimental investigation of the acoustic nonlinearity parameter tomography for excised pathological biological tissues', Ultrasound in Medicine & Biology, vol. 25, pp. 593-599, 1999.
[2] F. A. Duck, 'Nonlinear acoustics in diagnostic ultrasound', Ultrasound Med. Biol., vol. 28, no. 1, pp.1-18, 2002. [3] R. Beyer, 'Parameter of nonlinearity in fluids', J. Acoust. Soc. Amer., vol. 32, no. 6, pp.719 -721 1960. [4] D. Zhang, X. Gong, and X. Chen, 'Experimental imaging of the acoustic nonlinearity parameter B/A for biological tissues via a parametric array', Ultrasound in Medicine & Biology, vol. 27, pp. 1359-1365, 2001. [5] Ping He, “acoustic parameter estimation based on attenuation and dispersion measurements” IEEE/EMBS, 1998. [6] R. Kuc, 'Estimating acoustic attenuation from reflected ultrasound signals: Comparison of spectral-shift and spectral-difference approaches', IEEE Trans. Acoust. Speech Signal Processing, vol. 32, pp.1-6, 1984. [7] B. Zhao, O. A. Basir and G. S. Mittal 'Estimation of ultrasound attenuation and dispersion using short time fourier transform', Ultrasonics, vol. 43, pp.375-381, 2004. [8] W. K. Law, L. H. Frizzel and F. Dunn, 'Ultrasonic determination of nonlinearity parameter B/A for biological media', J. Acoust. Soc. Am., vol. 69, pp.1210 -1211, 1981. [9] C. M. Seghal, G. M. Brown, R. C. Bahn, and J. F. Greenleaf, 'Measurement and use of acoustic nonlinearity and sound speed to estimate composition of excised livers,' Ultrasound in Med. and Biol., vol. 12, no. 11, pp. 865-874, 1986. [10] G. Wojcik, B. Fornberg, R. Waag, L. Carcione, J. Mould, L. Nikodym and T. Driscoll, 'Pseudospectral methods for large-scale bioacoustic models', Proc. IEEE Ultrason. Symp., vol. 2, pp.1501 -1506, 1997. [11] J.-P. Berenger”A perfectly matched layer for the absorption of electromagnetic waves”,Computational Physics, 114, 185-200, 1994. [12] B. Fornberg, “A Practical Guide to Pseudospectral Methods”, Cambridge University Press, 1996. [13] Xiaojuen Yuan, “Formulation and Validation of Berenger's PML. Absorbing Boundary for the FDTD. Simulation of Acoustic Scattering.” IEEE, 1997. [14] H. Kim, J. A. Zagzebski and T. Varghese. 'Estimation of ultrasound attenuation from broadband echo-signals using bandpass filtering', IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 5, pp.1153 -1159, 2008. [15] Culjat MO, Goldenberg D, Tewari P, Singh RS. 'A Review of Tissue Substitutes for Ultrasound Imaging.' Ultrasound in Medicine & Biology 36:861-873. [16] K. A. Wear. 'The effects of frequency-dependent attenuation and dispersion on sound speed measurements: Application in human trabecular bone', IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, pp.265 -273, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17263 | - |
| dc.description.abstract | 傳統基頻超音波影像為偵測反射聲波的大小來進行成像,而解析度較高、穿透深度較深的諧波成像,則是藉由超音波在組織間傳遞過程中,因組織非線性特性導致聲波扭曲,經過濾波所得之諧波進行成像。有些人體器官的病變會使特定參數產生變化,如肝臟病變,且除了非線性參數外的其餘聲波參數改變不大。在基頻與諧波成像中,會因這些組織參數不同而帶有不同紋理,但由於不一定有明顯的反射介面,傳統影像無法清楚顯示這些參數不同之區域,只從紋理變化判斷是否產生病變有一定程度的困難。但若能針對非線性參數進行成像,則較能從影像上判斷病變的區域。
本研究模擬聲波在人體組織中行進,並以模擬得到之訊號進行非線性參數之估測。模擬方法為使用pseudo-spectrum對聲波方程式求解,套用PML的邊界條件,並使用二階衰減模型。透過將模擬聲波濾波後所得之基頻與二次諧波訊號,進行衰減係數估測,再用推導出之關係式進行非線性參數之估測並做成像。 影響此種估測方法的聲波參數有頻率、頻寬、估測深度、非線性參數異常幅度與區域大小等。頻率越大則對比度越大,但適用深度越淺。頻寬越大解析度也越大,但考慮亂數雜訊干擾時,雜訊會大幅提高,會使SNR降低。最後,非線性參數異常幅度與區域大小則與解析度有關。 此種估測方法由於估測方法需要對二次諧波能量進行微分,使得雜訊干擾大幅增加,因此最大缺點為對於輸入SNR要求非常高。若將發射訊號改為較低的頻寬,犧牲些許解析度,可以增加SNR。但由於低頻寬發射訊號所得到之解析度較低,因此或許可使用合頻方式增加其解析度,並使SNR提升。 | zh_TW |
| dc.description.abstract | The conventional fundamental ultrasound imaging is by detecting the magnitude of reflected sound, and the harmonic imaging, which has higher resolution and deeper penetration depth, is by detecting the magnitude of reflected sound distortion resulted from tissue nonlinearity and obtained from filtering. However, some organ diseases change specific ultrasound parameters, such as liver disease, and in addition these ultrasound parameters changes little except for nonlinearity. Different textures in ultrasound imaging are cause by different ultrasound parameter in both fundamental and harmonic ultrasound imaging. Though area with different ultrasound parameter do not ensure that there is an interface, it is difficult to detect disease by the fundamental imaging and the harmonic imaging. Nevertheless, it is might be useful to image nonlinearity to detect disease area.
In this study, we simulate ultrasound propagating in the tissue and estimate ultrasound nonlinearity by simulation signals. The simulation method is solving acoustics equation by the pseudo-spectrum, the perfectly matched layer boundary condition, and the second relaxation model. To estimate nonlinearity and image, we simulate first, filter the resulted signal, estimate the attenuation, and finally compute by the derived equation. This estimation affect by ultrasound parameter such as frequency, bandwidth, depth, disease area, and the magnitude of changes. The estimating nonlinearity has higher contrast when emit higher frequency, but only for the more shallow depths. The estimating nonlinearity has greater resolution when emit greater bandwidth signals, which increase noise and decrease SNR when considering the random effects. Finally the resolution of estimating nonlinearity is relate to the size and magnitude of disease area. Such estimating method requires differential operation, which is increase the noise effect. Therefore the biggest drawback is the requirement of very high input SNR. It might increase SNR by emit low bandwidth signals and decrease a little resolution. However, due to the low bandwidth of the emit signal obtained with lower resolution, it is possible to increase resolution and SNR by synthetic spectrum. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:03:46Z (GMT). No. of bitstreams: 1 ntu-102-R00945030-1.pdf: 1329377 bytes, checksum: 573c02f71d45306fcab51ecc44af3f04 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 viii Chapter 1 Introduction 1 1.1 動機 1 1.2 非線性參數 3 Chapter 2 理論方法 6 2.1 衰減係數估測理論 6 2.1.1 衰減估測方法 6 2.1.2 Log spectral difference method 7 2.2 非線性參數估測理論 8 2.2.1 非線性參數估測方法 8 2.2.2 使用基頻與二倍頻關係估算非線性係數 10 2.3 合頻 11 Chapter 3 模擬方法介紹 13 3.1 Pseudo-spectral method with PML 13 3.2 2nd relaxation model 15 3.3 Nonlinearity 16 Chapter 4 參數影響 18 4.1 模擬參數設定 18 4.2 頻寬 19 4.2.1 頻寬與衰減 20 4.2.2 頻寬與解析度 21 4.3 頻率 24 4.3.1 深度 25 4.3.2 頻率對非線性參數成像解析度之影響 26 4.4 加入隨機亂數干擾 27 4.5 訊雜比SNR 28 4.5.1 發射頻寬與訊雜比 29 4.5.2 發射頻率與訊雜比 32 Chapter 5 結果與討論 35 5.1 頻率與頻寬之訊雜比比較 35 5.2 非線性參數成像 37 5.3 非線性參數異常區域大小 40 5.4 合頻 42 Chapter 6 結論 46 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.title | 超音波成像參數對非線性參數估測之影響 | zh_TW |
| dc.title | Effects of ultrasound imaging parameter to estimate nonlinearity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊培銘,曹勝凱 | |
| dc.subject.keyword | 超音波成像,非線性參數,合頻, | zh_TW |
| dc.subject.keyword | ultrasound imaging,nonlinearity,synthetic spectrum, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
