請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17258
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭石通(Shih-Tong Jeng) | |
dc.contributor.author | Kai-Hung Cheng | en |
dc.contributor.author | 鄭凱鴻 | zh_TW |
dc.date.accessioned | 2021-06-08T00:03:30Z | - |
dc.date.copyright | 2013-08-29 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-14 | |
dc.identifier.citation | Akman, Z. (2009). Comparison of high temperature tolerance in maize, rice and sorghum seeds by plant growth regulators. Journal of Animal and Veterinary Advances 8, 358-361.
Arshad, M., and Frankenberger Jr, W.T. (2002). Ethylene: agricultural sources and applications. (Springer). Banowetz, G., Ammar, K., and Chen, D. (1999). Temperature effects on cytokinin accumulation and kernel mass in a dwarf wheat. Annals of Botany 83, 303-307. Corbineau, F., Rudnicki, R., and Come, D. (1989). ACC conversion to ethylene by sunflower seeds in relation to maturation, germination and thermodormancy. Plant growth regulation 8, 105-115. Doring, P., Treuter, E., Kistner, C., Lyck, R., Chen, A., and Nover, L. (2000). The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. The Plant Cell Online 12, 265-278. Egli, D., TeKrony, D., Heitholt, J., and Rupe, J. (2005). Air temperature during seed filling and soybean seed germination and vigor. Crop science 45, 1329-1335. Egorova, V.P., Lo, Y.-S., and Dai, H. (2011). Programmed cell death induced by heat shock in mung bean seedlings. Bot Stud 52, 73-78. Franco-Zorrilla, J.M., Valli, A., Todesco, M., Mateos, I., Puga, M.I., Rubio-Somoza, I., Leyva, A., Weigel, D., Garcia, J.A., and Paz-Ares, J. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature genetics 39, 1033-1037. Fujii, H., Chiou, T.J., Lin, S.I., Aung, K., and Zhu, J.K. (2005). A miRNA Involved in Phosphate-Starvation Response in Arabidopsis. Current Biology 15, 2038-2043. Giacomelli, J.I., Weigel, D., Chan, R.L., and Manavella, P.A. (2012). Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytologist 195, 766-773. Giorno, F., Wolters-Arts, M., Grillo, S., Scharf, K.-D., Vriezen, W.H., and Mariani, C. (2010). Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. Journal of experimental botany 61, 453-462. Gong, M., Li, Y.J., and Chen, S.Z. (1998). Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology 153, 488-496. Guan, Q., Lu, X., Zeng, H., Zhang, Y., and Zhu, J. (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. The Plant Journal. Guggenheim, D., Gore, A., Bender, L., Burns, S.Z., David, L., Pictures, P., and Documentary, G.W. (2007). An inconvenient truth. (Paramount Home Entertainment). Hahn, A., Bublak, D., Schleiff, E., and Scharf, K.D. (2011). Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. The Plant Cell Online 23, 741-755. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W., and Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences 103, 14288-14293. Harsant, J., Pavlovic, L., Chiu, G., Sultmanis, S., and Sage, T.L. (2013). High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. Journal of experimental botany. Hong, S.W., and Vierling, E. (2001). Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. The Plant Journal 27, 25-35. Horwich, M.D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P., and Zamore, P.D. (2007). The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC. Current Biology 17, 1265-1272. Hou, T., Zhang, X., Xu, J., Jian, C., Huang, Z., Ye, T., Hu, K., Zheng, M., Gao, F., and Wang, X. (2013). Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation. Journal of Biological Chemistry 288, 4602-4612. Huberman, M., Riov, J., Aloni, B., and Goren, R. (1997). Role of ethylene biosynthesis and auxin content and transport in high temperature-induced abscission of pepper reproductive organs. Journal of plant growth regulation 16, 129-135. Jones-Rhoades, M.W., and Bartel, D.P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular cell 14, 787-799. Kampinga, H.H., and Craig, E.A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature reviews Molecular cell biology 11, 579-592. Katiyar-Agarwal, S., and Jin, H. (2010). Role of small RNAs in host-microbe interactions. Annual review of phytopathology 48, 225-246. Khraiwesh, B., Zhu, J.K., and Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1819, 137-148. Khraiwesh, B., Arif, M.A., Seumel, G.I., Ossowski, S., Weigel, D., Reski, R., and Frank, W. (2010). Transcriptional control of gene expression by microRNAs. Cell 140, 111-122. Kim, V.N. (2004). MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends in cell biology 14, 156-159. Kotak, S., Vierling, E., Baumlein, H., and von Koskull-Doring, P. (2007). A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. The Plant Cell Online 19, 182-195. Krapp, A., Berthome, R., Orsel, M., Mercey-Boutet, S., Yu, A., Castaings, L., Elftieh, S., Major, H., Renou, J.-P., and Daniel-Vedele, F. (2011). Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant physiology 157, 1255-1282. Larkindale, J., and Huang, B. (2005). Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant growth regulation 47, 17-28. Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology 138, 882-897. Lee, Y., Kim, M., Han, J., Yeom, K.-H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal 23, 4051-4060. Leyva-Gonzalez, M.A., Ibarra-Laclette, E., Cruz-Ramirez, A., and Herrera-Estrella, L. (2012). Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members. PloS one 7, e48138. Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., and Zhu, J.K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell Online 20, 2238-2251. Li, Y., Fu, Y., Ji, L., Wu, C., and Zheng, C. (2010). Characterization and expression analysis of the Arabidopsis mir169 family. Plant Science 178, 271-280. Liu, H.H., Tian, X., Li, Y.J., Wu, C.A., and Zheng, C.C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. Rna 14, 836-843. Liu, H.C., Liao, H.T., and Charng, Y.Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell & Environment 34, 738-751. Liu, X., and Huang, B. (2005). Root physiological factors involved in cool-season grass response to high soil temperature. Environmental and Experimental Botany 53, 233-245. Llusia, J., Penuelas, J., and Munne‐Bosch, S. (2005). Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress. Physiologia Plantarum 124, 353-361. Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H.T., and Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology 48, 667-681. Maity, S.N., and de Crombrugghe, B. (1998). Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends in biochemical sciences 23, 174-178. Mantovani, R. (1999). The molecular biology of the CCAAT-binding factor NF-Y. Gene 239, 15-27. Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., and Scharf, K.D. (2002). In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes & Development 16, 1555-1567. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in plant science 9, 490-498. Mu, J., Tan, H., Hong, S., Liang, Y., and Zuo, J. (2013). Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Molecular plant 6, 188-201. Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., and Scharf, K.D. (2001). Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell stress & chaperones 6, 177. Park, M.Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H., and Poethig, R.S. (2005). Nuclear processing and export of microRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 102, 3691-3696. Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., and Cassman, K.G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101, 9971-9975. Pimentel, D. (1991). Global warming, population growth, and natural resources for food production. Society & natural resources 4, 347-363. Porter, J.R. (2005). Rising temperatures are likely to reduce crop yields. Nature 436, 174-174. Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J., and Jansen, M.A. (2007). Stress-induced morphogenic responses: growing out of trouble? Trends in plant science 12, 98-105. Pratt, W.B., and Toft, D.O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimental Biology and Medicine 228, 111-133. Queitsch, C., Hong, S.W., Vierling, E., and Lindquist, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell Online 12, 479-492. Ren, C., Bilyeu, K.D., and Beuselinck, P. (2009). Composition, vigor, and proteome of mature soybean seeds developed under high temperature. Crop science 49, 1010-1022. Rojas, A., Almoguera, C., and Jordano, J. (1999). Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors. The Plant Journal 20, 601-610. Rousch, J.M., Bingham, S.E., and Sommerfeld, M.R. (2004). Protein expression during heat stress in thermo-intolerant and thermo-tolerant diatoms. Journal of experimental marine biology and ecology 306, 231-243. Snider, J.L., and Oosterhuis, D.M. (2011). How does timing, duration, and severity of heat stress influence pollen-pistil interactions in angiosperms? Plant signaling & behavior 6, 930-933. Steidl, S., Tuncher, A., Goda, H., Guder, C., Papadopoulou, N., Kobayashi, T., Tsukagoshi, N., Kato, M., and Brakhage, A.A. (2004). A single subunit of a heterotrimeric CCAAT-binding complex carries a nuclear localization signal: piggy back transport of the pre-assembled complex to the nucleus. Journal of molecular biology 342, 515-524. Strand, A., Hurry, V., Gustafsson, P., and Gardestrom, P. (1997). Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. The Plant Journal 12, 605-614. Su, P.H., and Li, H.m. (2008). Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant physiology 146, 1231-1241. Sulpice, R., Pyl, E.T., Ishihara, H., Trenkamp, S., Steinfath, M., Witucka-Wall, H., Gibon, Y., Usadel, B., Poree, F., and Piques, M.C. (2009). Starch as a major integrator in the regulation of plant growth. Proceedings of the National Academy of Sciences 106, 10348-10353. Sunkar, R., and Zhu, J.-K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell Online 16, 2001-2019. Sunkar, R., Zhou, X., Zheng, Y., Zhang, W., and Zhu, J.K. (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC plant biology 8, 25. Todesco, M., Rubio-Somoza, I., Paz-Ares, J., and Weigel, D. (2010). A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS genetics 6, e1001031. Tonsor, S., Scott, C., Boumaza, I., Liss, T., Brodsky, J., and Vierling, E. (2008). Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions. Molecular ecology 17, 1614-1626. Vettakkorumakankav, N.N., Falk, D., Saxena, P., and Fletcher, R.A. (1999). A crucial role for gibberellins in stress protection of plants. Plant and cell physiology 40, 542-548. Vierling, E. (1991). The roles of heat shock proteins in plants. Annual review of plant biology 42, 579-620. Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669-687. Wahid, A. (2007). Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. Journal of plant research 120, 219-228. Wang, L.J., and Li, S.H. (2006a). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science 170, 685-694. Wang, L.J., and Li, S.H. (2006b). Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regulation 48, 137-144. Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C., and Qi, Y. (2010). DNA methylation mediated by a microRNA pathway. Molecular cell 38, 465-475. Wu, T.Y., Juan, Y.T., Hsu, Y.H., Wu, S.H., Liao, H.T., Fung, R.W., and Charng, Y.Y. (2013). Interplay between Heat Shock Proteins HSP101 and HSA32 Prolongs Heat Acclimation Memory Posttranscriptionally in Arabidopsis. Plant physiology 161, 2075-2084. Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., and Sun, Q. (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC plant biology 10, 123. Xiong, L., Lee, H., Ishitani, M., and Zhu, J.K. (2002). Regulation of Osmotic Stress-responsive Gene Expression by theLOS6/ABA1 Locus inArabidopsis. Journal of Biological Chemistry 277, 8588-8596. Xu, S., Li, J., Zhang, X., Wei, H., and Cui, L. (2006). Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany 56, 274-285. Yan, K., Liu, P., Wu, C.A., Yang, G.D., Xu, R., Guo, Q.H., Huang, J.G., and Zheng, C.C. (2012). Stress-Induced Alternative Splicing Provides a Mechanism for the Regulation of MicroRNA Processing in Arabidopsis thaliana. Molecular cell. Zhang, J.H., Wang, L.J., Pan, Q.H., Wang, Y.Z., Zhan, J.C., and Huang, W.D. (2008). Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross-adaptation to temperature stresses. Scientia Horticulturae 117, 231-240. Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., and Jin, Y. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Molecular Biology 10, 29. Zhao, M., Ding, H., Zhu, J.K., Zhang, F., and Li, W.X. (2011). Involvement of miR169 in the nitrogen‐starvation responses in Arabidopsis. New Phytologist 190, 906-915. Zhou, X., Wang, G., and Zhang, W. (2007). UV-B responsive microRNA genes in Arabidopsis thaliana. Molecular Systems Biology 3. Zhou, X., Wang, G., Sutoh, K., Zhu, J.K., and Zhang, W. (2008). Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1779, 780-788. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17258 | - |
dc.description.abstract | miRNA是小片段的non-coding RNA,這些小片段的RNA在調控植物的生長和發育上扮演著相當重要的角色。miR169在不同物種之間是一段高度保守性的序列。在阿拉伯芥當中已知miR169家族一共有14個不同的成員。前人的研究中也指出miR169會參與在不同的非生物性逆境之調控當中。除了乾旱和缺氮逆境外,miR169也會參與在逆境當中。miR169的表現會受熱誘導而上升,目標基因轉錄因子Nuclear factor Y(NF-Y)家族中的NF-YA則是會下降。但是,miR169和熱相關的調控機制之研究仍然有限。因此,本實驗的目的是想了解miR169和NF-YA在熱逆境下,如何進行調控進而使植物耐熱。利用35S啟動子大量表現miR169的前驅序列(OE Line),或大量表現一股與mature mir169互補的序列(Target mimicry line) 抑制mir169的活性,進行NF-YA的調控,藉以了解miR169與NF-YA在熱的情況下所扮演的角色。發芽率的檢測於熱處理後,OE Line有較佳的發芽情形。先天性耐熱能力的測試中,Target mimicry line有較高的存活率,相反的,在後天性的耐熱能力測試則是OE Line有較高的存活率。也因此,下胚軸長度檢測OE Line中有些微較長的情形。根長則是部分Target mimicry line有較短的情況。總結以上的結果,miR169可藉由調控NF-YA進而使植物在不同的熱逆境條件下維持其恆定性,進而使植物更耐熱。 | zh_TW |
dc.description.abstract | MicroRNAs (miRNAs) are small non-coding RNAs, and they play important roles in plant growth and development. miR169 is a conserved miRNA in many plant species, and it contains 14 members of the miR169 family in Arabidopsis. In addition, miR169 is known to be involved in various stress responses, including drought and nitrogen deficient. Previous studies have shown that the expression of miR169 can be induced by heat treatment, but the research on miR169-regulated mechanism in heat response is still limited. Here, we generated transgenics overexpressing miR169 and transgenics expressing target mimic inhibitor, which could inhibit miR169 activity. After heat treatment, the germination rates of seeds were slightly increased in miR169 overexpression lines compared to those in wild type. Under basal thermotolerance, the mimicry lines were also greener than the wild type. But they showed opposite result under acquired thermotolerance. In addition, the hypocotyls lengths of the miR169 overexpression lines were slightly longer compared to those of the wild type plants. Although the miR169 overexpression lines did not show any difference, but the root lengths of miR169 target mimicry lines were shorter than those of the wild types. Overall, these results showed that miR169 might regulate NF-YA expression homeostasis to be involved in different thermotolerance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:03:30Z (GMT). No. of bitstreams: 1 ntu-102-R00b42036-1.pdf: 1173694 bytes, checksum: 9d25a146629a0dbe361b612b83f37957 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv 縮寫與中英對照表 v 目錄 vi 圖目錄 ix 第一章 緒論 1 壹、 研究動機 1 一、 熱逆境 1 二、 熱逆境對植物的影響 1 2.1 植物的生長 1 2.2 植物的生殖 2 2.3 植物內部的生理反應 2 三、 熱逆境下植物的生理調控 2 3.1 過氧化物(ROS) 2 3.2 熱休克因子(HSF) 3 3.3 熱休克蛋白(HSP) 3 3.4 賀爾蒙 4 四、 miRNA 5 4.1 miRNA的生合成 5 4.2 miRNA與逆境 5 4.3 miRNA與熱逆境 6 五、 miR169與NF-YA 6 六、 實驗目的 8 第二章 材料與方法 9 壹、 材料 9 貳、 方法 10 一、 DNA 10 1.1 DNA純化 10 1.2 DNA電泳 10 二、 RNA 10 2.1 RNA純化 10 2.2 RNA跑膠 11 三、 聚合酶鏈鎖反應(PCR) 11 3.1 聚合酶鏈鎖反應(RT-PCR) 11 3.2 即時定量聚合酶鏈鎖反應(QRT-PCR) 11 3.3 cDNA合成 11 3.4 Mature miRNA cDNA合成 12 四、 質體構築 12 4.1 限制酶切割 12 4.2 DNA切膠純化 12 4.3 DNA黏合 12 4.4 轉型作用 13 4.5 小量質體抽取 13 4.6 DNA定序 13 五、 農桿菌轉染及阿拉伯芥轉殖 13 5.1 農桿菌勝任細胞製備 13 5.2 農桿菌轉型 14 5.3 阿拉伯芥轉殖 14 六、 阿拉伯芥外表型態與生理分析 14 6.1 無菌播種與熱逆境下發芽率 14 6.2 先天性耐熱能力測試(Basal thermotolerance) 14 6.3 後天性的耐熱能力測試(Acquired thermoltolerance) 15 6.4 熱逆境下胚軸長度檢測 15 6.5 熱逆境根長檢測 15 第三章 結果 16 一、 miR169b於熱的情況下之表現 16 二、 miR169b目標基因於熱的情況下之表現 16 三、 miR169b OE lines之基因檢測 16 四、miR169 target mimicry line 的原理 17 五、miR169轉殖株當中目標基因的檢測 17 六、熱處理後之發芽率檢測 17 七、熱處理之先天性耐熱能力檢測(Basal thermotolerance) 18 八、熱處理之後天性的耐熱能力檢測 (Acquired thermoltolerance) 18 九、熱處理之下胚軸長度檢測 18 十、熱處理之根長檢測 19 第四章 討論 20 一、 miR169與NF-YA的調控。 20 二、 miR169轉殖株與基因表現 20 三、 miR169與發芽 22 四、 miR169與先天性耐熱能力檢測 23 五、 miR169與後天性耐熱能力檢測 24 六、 熱處理下之下胚軸長度檢測 25 七、 熱處理下之根長度檢測 25 圖 27 參考文獻 37 附錄 44 圖目錄 圖一、 miR169b於熱的情況下之表現 27 圖二、 miR169b目標基因於熱的情況下之表現 28 圖三、 miR169b OE line前驅物之基因檢測 29 圖四、 miR169 target mimicry line 的原理 30 圖五、 miR169轉殖珠中目標基因的檢測 31 圖六、熱處理後之發芽率檢測 32 圖七、熱處理之先天性耐熱能力檢測(Basal thermotolerance) 33 圖八、熱處理之後天性的耐熱能力檢測(Acquired thermoltolerance) 34 圖九、熱處理之下胚軸長度檢測 35 圖十、熱處理之根長檢測 36 | |
dc.language.iso | zh-TW | |
dc.title | 阿拉伯芥miR169於熱逆境下的功能性分析 | zh_TW |
dc.title | Functional analyses of miR169 in Arabidopsis under heat stress | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陸重安,黃麗芬 | |
dc.subject.keyword | miR169,NF-YA,熱逆境,耐熱性,先天性耐熱能力,後天性的耐熱, | zh_TW |
dc.subject.keyword | miR169,NF-YA,,Heat,Thermotolerance,Basal thermotolerance,Acquired thermotolerance., | en |
dc.relation.page | 46 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-08-14 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 1.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。