請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17256完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯逢春(Ferng-Chun Ke) | |
| dc.contributor.author | Pei-Ru Liao | en |
| dc.contributor.author | 廖珮汝 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:03:23Z | - |
| dc.date.copyright | 2013-08-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | 1. Crick, F., Central dogma of molecular biology. Nature, 1970. 227(5258): p. 561-3.
2. Oltvai, Z.N. and A.L. Barabasi, Systems biology. Life's complexity pyramid. Science, 2002. 298(5594): p. 763-4. 3. DeBerardinis, R.J., et al., Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A, 2007. 104(49): p. 19345-50. 4. Dann, S.G., A. Selvaraj, and G. Thomas, mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med, 2007. 13(6): p. 252-9. 5. Long, X., et al., Rheb binds and regulates the mTOR kinase. Curr Biol, 2005. 15(8): p. 702-13. 6. Edinger, A.L. and C.B. Thompson, Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell, 2002. 13(7): p. 2276-88. 7. Hyde, R., P.M. Taylor, and H.S. Hundal, Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J, 2003. 373(Pt 1): p. 1-18. 8. Martin, D.E. and M.N. Hall, The expanding TOR signaling network. Curr Opin Cell Biol, 2005. 17(2): p. 158-66. 9. Ruggero, D., et al., The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med, 2004. 10(5): p. 484-6. 10. Gordan, J.D., C.B. Thompson, and M.C. Simon, HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 2007. 12(2): p. 108-13. 11. Zhang, H., et al., HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 2007. 11(5): p. 407-20. 12. Frei, C. and B.A. Edgar, Drosophila cyclin D/Cdk4 requires Hif-1 prolyl hydroxylase to drive cell growth. Dev Cell, 2004. 6(2): p. 241-51. 13. Datar, S.A., et al., The Drosophila cyclin D-Cdk4 complex promotes cellular growth. EMBO J, 2000. 19(17): p. 4543-54. 14. Datar, S.A., et al., Mammalian cyclin D1/Cdk4 complexes induce cell growth in Drosophila. Cell Cycle, 2006. 5(6): p. 647-52. 15. Tsutsui, T., et al., Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol, 1999. 19(10): p. 7011-9. 16. Sarbassov, D.D., et al., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005. 307(5712): p. 1098-101. 17. Heng, Y.W. and C.G. Koh, Actin cytoskeleton dynamics and the cell division cycle. Int J Biochem Cell Biol, 2010. 42(10): p. 1622-33. 18. Olson, M.F., A. Ashworth, and A. Hall, An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science, 1995. 269(5228): p. 1270-2. 19. Jacinto, E., et al., Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol, 2004. 6(11): p. 1122-8. 20. Sicinski, P., S. Zacharek, and C. Kim, Duality of p27Kip1 function in tumorigenesis. Genes Dev, 2007. 21(14): p. 1703-6. 21. Denicourt, C. and S.F. Dowdy, Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev, 2004. 18(8): p. 851-5. 22. Li, F., et al., Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol, 2005. 25(14): p. 6225-34. 23. Wise, D.R., et al., Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A, 2008. 105(48): p. 18782-7. 24. Gao, P., et al., c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009. 458(7239): p. 762-5. 25. Koshiji, M., et al., HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell, 2005. 17(6): p. 793-803. 26. Attardi, G. and G. Schatz, Biogenesis of mitochondria. Annu Rev Cell Biol, 1988. 4: p. 289-333. 27. Bogenhagen, D. and D.A. Clayton, Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell, 1977. 11(4): p. 719-27. 28. Imoto, Y., et al., The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations. J Electron Microsc (Tokyo), 2011. 60 Suppl 1: p. S117-36. 29. Shay, J.W., D.J. Pierce, and H. Werbin, Mitochondrial DNA copy number is proportional to total cell DNA under a variety of growth conditions. J Biol Chem, 1990. 265(25): p. 14802-7. 30. Puigserver, P. and B.M. Spiegelman, Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev, 2003. 24(1): p. 78-90. 31. Lowell, B.B. and B.M. Spiegelman, Towards a molecular understanding of adaptive thermogenesis. Nature, 2000. 404(6778): p. 652-60. 32. Duguez, S., et al., Mitochondrial biogenesis during skeletal muscle regeneration. Am J Physiol Endocrinol Metab, 2002. 282(4): p. E802-9. 33. Wu, H., et al., Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science, 2002. 296(5566): p. 349-52. 34. Zong, H., et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A, 2002. 99(25): p. 15983-7. 35. Cerveny, K.L., et al., Regulation of mitochondrial fusion and division. Trends Cell Biol, 2007. 17(11): p. 563-9. 36. Schieke, S.M., J.P. McCoy, Jr., and T. Finkel, Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle, 2008. 7(12): p. 1782-7. 37. Mitra, K., et al., A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci U S A, 2009. 106(29): p. 11960-5. 38. Johnston, G.C., J.R. Pringle, and L.H. Hartwell, Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res, 1977. 105(1): p. 79-98. 39. Neufeld, T.P., et al., Coordination of growth and cell division in the Drosophila wing. Cell, 1998. 93(7): p. 1183-93. 40. Chu, I.M., L. Hengst, and J.M. Slingerland, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer, 2008. 8(4): p. 253-67. 41. Malumbres, M., et al., Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell, 2004. 118(4): p. 493-504. 42. Quelle, D.E., et al., Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev, 1993. 7(8): p. 1559-71. 43. Jiang, W., et al., Overexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control, cell cycle progression and gene expression. Oncogene, 1993. 8(12): p. 3447-57. 44. Tapon, N., et al., The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell, 2001. 105(3): p. 345-55. 45. Hartwell, L.H. and T.A. Weinert, Checkpoints: controls that ensure the order of cell cycle events. Science, 1989. 246(4930): p. 629-34. 46. Turner, J.J., J.C. Ewald, and J.M. Skotheim, Cell size control in yeast. Curr Biol, 2012. 22(9): p. R350-9. 47. Rupes, I., Checking cell size in yeast. Trends Genet, 2002. 18(9): p. 479-85. 48. Reed, S.I., Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol, 2003. 4(11): p. 855-64. 49. Killander, D. and A. Zetterberg, Quantitative Cytochemical Studies on Interphase Growth. I. Determination of DNA, Rna and Mass Content of Age Determined Mouse Fibroblasts in Vitro and of Intercellular Variation in Generation Time. Exp Cell Res, 1965. 38: p. 272-84. 50. Dolznig, H., et al., Evidence for a size-sensing mechanism in animal cells. Nat Cell Biol, 2004. 6(9): p. 899-905. 51. Fremont, L., Biological effects of resveratrol. Life Sci, 2000. 66(8): p. 663-73. 52. Lagouge, M., et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006. 127(6): p. 1109-22. 53. Baur, J.A. and D.A. Sinclair, Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov, 2006. 5(6): p. 493-506. 54. Baur, J.A., et al., Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006. 444(7117): p. 337-42. 55. Pomerening, J.R., S.Y. Kim, and J.E. Ferrell, Jr., Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell, 2005. 122(4): p. 565-78. 56. Schibler, U. and F. Naef, Cellular oscillators: rhythmic gene expression and metabolism. Curr Opin Cell Biol, 2005. 17(2): p. 223-9. 57. Pomerening, J.R., E.D. Sontag, and J.E. Ferrell, Jr., Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol, 2003. 5(4): p. 346-51. 58. Lum, J.J., et al., The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev, 2007. 21(9): p. 1037-49. 59. Reiling, J.H. and E. Hafen, The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev, 2004. 18(23): p. 2879-92. 60. Park, S.J., et al., Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 2012. 148(3): p. 421-33. 61. Kirkland, R.A., et al., Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy. Neuroscience, 2002. 115(2): p. 587-602. 62. King, M.P. and G. Attardi, Isolation of human cell lines lacking mitochondrial DNA. Methods Enzymol, 1996. 264: p. 304-13. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17256 | - |
| dc.description.abstract | 細胞生長(cell growth)是細胞有組織的將外界營養分子合成大量巨分子以增加細胞質量(biomass)的過程,也是驅動細胞增生(cell proliferation)重要的力量。細胞增生過程中,遺傳物質(chromosomes)的複製與內在胞器(e.g., 粒線體、核糖體)之數量變化,以及諸多相關的調節機制都必須保有忠實性(fidelity),保證所有增生的細胞均與原細胞類似。而盛裝這些物質的容器也就是細胞本體,其大小的調控(size control)亦會受到細胞內、外的動態系統所影響。為達到有效率的累積細胞質量(biomass)之目的,粒線體由原本負責能量提供的角色,轉變為巨分子合成中心,以代謝重整(metabolic reprogram)的途徑支應細胞生長過程的需求。
Saccharomyces cerevisiae可藉由母細胞當作細胞生長的模版,但在哺乳類細胞的生長過程並無此依據,而我們推論哺乳類細胞生長到兩倍大小的過程,可能與粒線體所進行的營養代謝重整有關;此外,粒線體擁有自己的DNA,在細胞生長週期中遵守複製一次且只有一次的原則,其數量亦需符合細胞複製的忠實性。 本篇研究目的為建立粒線體數目(mitochondrial number)與細胞大小控制(cell size control)的連結關係。利用Resveratrol作為影響粒線體數目的主要工具,藉此促使粒線體生合成(biogenesis)增加。 研究結果顯示,當以Resveratrol處理 HeLa細胞時,利用螢光染劑NAO透過流式細胞儀測量粒線體總量,並同時測量forward scatter-width (FSC-W) 來代表細胞大小,發現細胞大小有隨粒線體數目增加呈現變大的現象;而於24小時後移除Resveratrol再進行培養,則發現粒線體數目與細胞大小可恢復正常。若將Resveratrol的處理時間增加至48小時並移除Resveratrol後再次培養,粒線體數目與細胞大小仍維持增加的現象。 藉由建立粒線體數目與細胞大小的關係,發現粒線體在哺乳類細胞可作為細胞生長的模板之一,且可更進一步將經過48小時Resveratrol處理再移除所培養出的細胞,視為新的對照組來發展其他的實驗觀察。 | zh_TW |
| dc.description.abstract | Cell growth, the driving force to cell proliferation, is the process of up-regulating macromolecular synthesis and thereby increasing biomass. In proliferating cells, the chromosome replication, the quantitative change of organelles, and all related regulating mechanisms must comply with fidelity. This is to ensure that every single copy cell is similar to the original cell. Cell containing these substances whose size control could also be affected by the inside and outside dynamical systems. To efficiently accumulate biomass, mitochondria switch the role of TCA cycle from producing energy to exporting much of the intermediates for biomass synthesis.
Saccharomyces cerevisiae can use its mother cell as template during cell growth, however mammalian cells do not coordinate their growing process in the same way. We suggest that mammalian cells gradually growing to twice the size may be associated with mitochondrial metabolism. In addition, the quantitative change of mitochondria in cell growth session should not only comply with the cell replication fidelity, but also abide by the principle of once-and-only-once replication. The purpose of this study was to establish the correlation of mitochondrial numbers and cell size control by using Resveratrol as the main tool to promote mitochondrial biogenesis. The results of this study reveal that: (1)Under the treatment with Resveratrol in HeLa cells, using the fluorescent dye NAO on flow cytometry to measure the mitochondrial number, and using forward scatter-width (FSC-W) to obtain the cell size, the cell size increases as the number of mitochondria increases. (2)After treating with Resveratrol for 24 hours and then removing it, we find that the number of mitochondria and cell size can return to the same degree of those in normal cells. (3)The number of mitochondria and cell size keep on increasing after the Resveratrol removed from the 48-hour treated object. In this study, we establish the correlation between mitochondrial numbers and cell size control, and also discover mitochondria can be used as a template during the cell growth of mammalian cells. Moreover, we can use those cells whose Resveratrol influence has been removed after the 48-hour treatment as a whole new control group to develop other experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:03:23Z (GMT). No. of bitstreams: 1 ntu-102-R99b43034-1.pdf: 873986 bytes, checksum: efdda2df6c365488768fa4e7c364b925 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 1 中文摘要 2 英文摘要 3 目錄 5 圖目錄 7 引言 8 細胞生長時粒線體的角色轉變:代謝重整後的營養感力…………………………………………9 累積細胞質量包括骨架與內容物的主要調節者: mTOR complexs……………10 受mTORC1調控表現的蛋白質會影響粒線體的生合成,造成粒線體的代謝活 性改變…………………………………………………………………………………………………………………………………14 粒線體的生合成過程會受細胞營養狀態影響……………………………………………………………14 粒線體的代謝活性會與粒線體的群體動態表現互相響…………………………………………16 Cell growth cycle驅使著cell division cycle來監控細胞大小恆定 性…………………………………………………………………………………………………………………………………………16 哺乳類細胞失去了生長大小的模版是如何調控細胞生長直到最終的大小………18 實驗目的 20 材料與方法 21 藥物及試劑………………………………………………………………………………………………………21 細胞培養……………………………………………………………………………………………………………21 生長曲線……………………………………………………………………………………………………………22 細胞內涵物萃取………………………………………………………………………………………………22 蛋白質電泳與西方轉漬法………………………………………………………………………………23 螢光染色……………………………………………………………………………………………………………24 流式細胞儀分析:粒線體數目、細胞大小及細胞週期…………………………24 結果 26 Resveratrol影響細胞型態與粒線體數量的變化………………………………………………26 細胞大小與粒線體總量成正相關…………………………………………………………………………………26 當粒線體的數量增加其內在的蛋白質量也隨著處理濃度與處理時間增加………27 在Resveratrol處理下粒線體膜電位受到些微抑制……………………………………………27 處理48小時之後移除Resveratrol的粒線體總量與細胞大小仍然維持增大增 多的現象……………………………………………………………………………………………………………………………27 Resveratrol處理造成細胞週期的分布改變………………………………………………………28 討論 29 參考文獻 41 | |
| dc.language.iso | zh-TW | |
| dc.title | 粒線體數目與細胞大小忠實性關聯建立之探討 | zh_TW |
| dc.title | Establishing the correlation between mitochondrial numbers and cell size control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃娟娟(Jiuan-Jiuan Hwang),黃火鍊(Fore-Lien Huang),蕭培文(Pei-Wen Hsiao),李明亭(Ming-Ting Lee) | |
| dc.subject.keyword | 粒線體數目,細胞大小控制,細胞質量,忠實性,代謝重整,Resveratrol, | zh_TW |
| dc.subject.keyword | Mitochondrial number,Size control,Cell biomass,Fidelity,Metabolic reprogram,Resveratrol, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 853.5 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
