Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17248
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭明良(Min-Liang Kuo)
dc.contributor.authorPing-Yu Chenen
dc.contributor.author陳品妤zh_TW
dc.date.accessioned2021-06-08T00:02:57Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citation1. Organization, W.H., International Agency for Research on Cancer. GLOBOCAN 2008. Cancer Incidence and Mortality World Wide, 2008.
2. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 2013. 63(1): p. 11-30.
3. El–Serag, H.B. and K.L. Rudolph, Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007. 132(7): p. 2557-2576.
4. El-Serag, H.B., Current Concepts. The New England Journal of Medicine, 2011. 365: p. 1118-27.
5. Wang, X.W., et al., Molecular pathogenesis of human hepatocellular carcinoma. Toxicology, 2002. 181: p. 43-47.
6. Rahbari, N.N., et al., Hepatocellular carcinoma: current management and perspectives for the future. Annals of surgery, 2011. 253(3): p. 453-469.
7. Park, J.W., [Practice guideline for diagnosis and treatment of hepatocellular carcinoma]. The Korean journal of hepatology, 2004. 10(2): p. 88.
8. Minagawa, M., et al., Staging of hepatocellular carcinoma: assessment of the Japanese TNM and AJCC/UICC TNM systems in a cohort of 13,772 patients in Japan. Annals of surgery, 2007. 245(6): p. 909.
9. Lim, K.-C., et al., Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Annals of surgery, 2011. 254(1): p. 108-113.
10. Yamamoto, J., et al., Recurrence of hepatocellular carcinoma after surgery. British journal of surgery, 1996. 83(9): p. 1219-1222.
11. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews Cancer, 2006. 6(9): p. 674-687.
12. Alves, R., et al., Advanced hepatocellular carcinoma. Review of targeted molecular drugs. Annals of Hepatology, 2011. 10(1): p. 21-27.
13. Nordenstedt, H., D.L. White, and H.B. El-Serag, The changing pattern of epidemiology in hepatocellular carcinoma. Digestive and Liver Disease, 2010. 42: p. S206-S214.
14. Feitelson, M.A. and J. Lee, Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer letters, 2007. 252(2): p. 157.
15. Matsubara, K. and T. Tokino, Integration of hepatitis B virus DNA and its implications for hepatocarcinogenesis. Molecular biology & medicine, 1990. 7(3): p. 243.
16. Diao, J., R. Garces, and C.D. Richardson, X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine & growth factor reviews, 2001. 12(2): p. 189-205.
17. Chang, M.H., Decreasing incidence of hepatocellular carcinoma among children following universal hepatitis B immunization. Liver International, 2003. 23(5): p. 309-314.
18. Anzola, M., Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis. Journal of viral hepatitis, 2004. 11(5): p. 383-393.
19. Selimovic, D., et al., Hepatitis C virus-related hepatocellular carcinoma: An insight into molecular mechanisms and therapeutic strategies. World journal of hepatology, 2012. 4(12): p. 342.
20. Jiang, F., et al., Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 2011. 479(7373): p. 423-427.
21. Sumpter, R., et al., Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. Journal of virology, 2005. 79(5): p. 2689-2699.
22. Meylan, E., et al., Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005. 437(7062): p. 1167-1172.
23. Baum, A. and A. García-Sastre, Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino acids, 2010. 38(5): p. 1283-1299.
24. Sun, Y., RIG-I, a human homolog gene of RNA helicase, is induced by retinoic acid during the differentiation of acute promyelocytic leukemia cell. Shanghai Second Medical University, Shanghai, 1997.
25. Kutikhin, A.G. and A.E. Yuzhalin, Inherited variation in pattern recognition receptors and cancer: dangerous liaisons? Cancer management and research, 2012. 4: p. 31.
26. Kutikhin, A.G. and A.E. Yuzhalin, C-type lectin receptors and RIG-I-like receptors: new points on the oncogenomics map. Cancer management and research, 2012. 4: p. 39.
27. Kato, H., et al., Cell type-specific involvement of RIG-I in antiviral response. Immunity, 2005. 23(1): p. 19-28.
28. Zhang, N.-N., et al., RIG-I plays a critical role in negatively regulating granulocytic proliferation. Proceedings of the National Academy of Sciences, 2008. 105(30): p. 10553-10558.
29. Kang, D.-c., et al., mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proceedings of the National Academy of Sciences, 2002. 99(2): p. 637-642.
30. Su, Z.Z., et al., Central role of interferon regulatory factor‐1 (IRF‐1) in controlling retinoic acid inducible gene‐I (RIG‐I) expression. Journal of cellular physiology, 2007. 213(2): p. 502-510.
31. Slaga, T., Overview of tumor promotion in animals. Environmental Health Perspectives, 1983. 50: p. 3.
32. Vogelstein, B. and K.W. Kinzler, Cancer genes and the pathways they control. Nature medicine, 2004. 10(8): p. 789-799.
33. Nowell, P.C., Mechanisms of tumor progression. Cancer Research, 1986. 46(5): p. 2203-2207.
34. Kumar, V., A.K. Abbas, and J.C. Aster, Robbins basic pathology. Elsevier Health Sciences, 2012.
35. Weinberg, R., The Biology of Cancer. Garland Science, 2007.
36. Cairns, R., R. Khokha, and R. Hill, Molecular mechanisms of tumor invasion and metastasis: an integrated view. Current molecular medicine, 2003. 3(7): p. 659-671.
37. Tarin, D., Tumor metastasis. Oxford Textbook of Pathology, 1992: p. 607-633.
38. Lee, J.M., et al., The epithelial–mesenchymal transition: new insights in signaling, development, and disease. The Journal of cell biology, 2006. 172(7): p. 973-981.
39. Jordan, C.T., M.L. Guzman, and M. Noble, Cancer stem cells. New England Journal of Medicine, 2006. 355(12): p. 1253-1261.
40. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-715.
41. Singh, A. and J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010. 29(34): p. 4741-4751.
42. Yang, W., et al., OV6+ tumor-initiating cells contribute to tumor progression and invasion in human hepatocellular carcinoma. Journal of hepatology, 2012. 57(3): p. 613-620.
43. Kim, H., et al., Human hepatocellular carcinomas with “Stemness”‐related marker expression: keratin 19 expression and a poor prognosis. Hepatology, 2011. 54(5): p. 1707-1717.
44. West, A.P., G.S. Shadel, and S. Ghosh, Mitochondria in innate immune responses. Nature Reviews Immunology, 2011. 11(6): p. 389-402.
45. Yoneyama, M., et al., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology, 2004. 5(7): p. 730-737.
46. Saito, T., et al., Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature, 2008. 454(7203): p. 523-527.
47. Thompson, A.J. and S.A. Locarnini, Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunology and cell biology, 2007. 85(6): p. 435-445.
48. Liu, F. and J. Gu, Retinoic acid inducible gene-I, more than a virus sensor. Protein & cell, 2011. 2(5): p. 351-357.
49. Weiss, S.W., J.R. Goldblum, and F.M. Enzinger, Enzinger and Weiss's soft tissue tumors. Elsevier Health Sciences, 2001.
50. Krasagakis, K., et al., Effects of interferons on cultured human melanocytes in vitro: interferon-beta but not-alpha or-gamma inhibit proliferation and all interferons significantly modulate the cell phenotype. Journal of investigative dermatology, 1991. 97(2): p. 364-372.
51. Leszczyniecka, M., et al., Identification and cloning of human polynucleotide phosphorylase, hPNPaseold-35, in the context of terminal differentiation and cellular senescence. Proceedings of the National Academy of Sciences, 2002. 99(26): p. 16636-16641.
52. Waxman, S., Differentiation Therapy. Ares Serono Symposia Publications, 1995.
53. Freemerman, A., et al., Effects of antisense p21 (WAF1/CIP1/MDA6) expression on the induction of differentiation and drug-mediated apoptosis in human myeloid leukemia cells (HL-60). Leukemia, 1997. 11(4): p. 504-513.
54. Niederreither, K., et al., Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genetics, 1999. 21(4): p. 444-448.
55. Huang, M.E., et al., Use of All-Trans Retinoic Acid in the Treatment of Acute Promyelocytic Leukemia. Blood, 1988. 72(2): p. 567-572.
56. Jiang, L.-J., et al., RA-inducible gene-I induction augments STAT1 activation to inhibit leukemia cell proliferation. Proceedings of the National Academy of Sciences, 2011. 108(5): p. 1897-1902.
57. Imaizumi, T., et al., Interferon-gamma induces retinoic acid-inducible gene-I in endothelial cells. Endothelium-Journal of Endothelial Cell Research, 2004. 11(3-4): p. 169-173.
58. Imaizumi, T., et al., Involvement of retinoic acid-inducible gene-I in the IFN-gamma/STAT1 signalling pathway in BEAS-2B cells. European Respiratory Journal, 2005. 25(6): p. 1077-1083.
59. Imaizumi, T., et al., Retinoic acid-inducible gene-I (RIG-I) is induced by IFN-gamma in human mesangial cells in culture: possible involvement of RIG-I in the inflammation in lupus nephritis. Lupus, 2010. 19(7): p. 830-836.
60. Dimberg, A., et al., Ser727/Tyr701-phosphorylated Stat1 is required for the regulation of c-Myc, cyclins, and p27Kip1 associated with ATRA-induced G0/G1 arrest of U-937 cells. Blood, 2003. 102(1): p. 254-261.
61. Dimberg, A., K. Nilsson, and F. Öberg, Phosphorylation-deficient Stat1 inhibits retinoic acid–induced differentiation and cell cycle arrest in U-937 monoblasts. Blood, 2000. 96(8): p. 2870-2878.
62. Li, H., et al., IPS-1 is crucial for DAP3-mediated anoikis induction by caspase-8 activation. Cell Death & Differentiation, 2009. 16(12): p. 1615-1621.
63. Yoboua, F., et al., Respiratory syncytial virus-mediated NF-κB p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKKβ. Journal of virology, 2010. 84(14): p. 7267-7277.
64. Takeuchi, O. and S. Akira, MDA5/RIG-I and virus recognition. Current opinion in immunology, 2008. 20(1): p. 17-22.
65. Seth, R.B., et al., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell, 2005. 122(5): p. 669-682.
66. Curran, S. and G.I. Murray, Matrix metalloproteinases in tumour invasion and metastasis. The Journal of pathology, 1999. 189(3): p. 300-308.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17248-
dc.description.abstract模式識別受體 (pattern recognition receptors, PRRs) 的基因變異已經被提出可能和多種癌症的發生相關,其中包括肝癌。視黃酸誘導基因-I (Retinoic acid-inducible gene-I, RIG-I) 在大多數的研究中被視為一個能辨認病毒RNA的PRR,能活化免疫防禦的機制。然而,已有研究指出,在沒有病毒感染的情況下,RIG-I 的表現會影響胚胎發育和細胞分化的過程;此外,在 RIG-I 基因剔除小鼠的胚胎發育過程中,會出現肝細胞大量死亡的現象。根據過去研究表示,RIG-I 在前列腺癌、乳癌、皮膚癌和星狀細胞瘤細胞中的表現量都較其正常細胞中低,但目前 RIG-I 在肝癌病人腫瘤中的表現量和其扮演的角色仍不清楚。故本篇研究欲探討 RIG-I 在肝癌中參與的生物功能及其調控機轉。我們首先確認 RIG-I mRNA 表現量在肝癌病患的腫瘤組織中顯著低於正常組織中,而 RIG-I 在腫瘤組織中的表現量也與惡性程度分級呈現負相關。接著,我們發現相較於野生型肝癌細胞株,抑制 RIG-I 表現的肝癌細胞株和 RIG-I 突變的肝癌細胞株在免疫缺陷鼠中皆有顯著較高的致腫瘤性,細胞的自我更新能力有顯著地提升,肝癌幹細胞標誌的蛋白表現量也有明顯增加。我們更發現RIG-I會影響上皮-間葉轉換的標誌蛋白表現量,且重要的是細胞轉移及侵襲的能力在 RIG-I 過度表現的細胞株中被顯著抑制;反之,細胞轉移及侵襲的能力在抑制RIG-I 表現的細胞株中則是顯著增加。而在細胞株轉染 RIG-I 不同片段的實驗中證實,只有凋亡蛋白酶募集區域 (caspase recruitment domain, CARD domain) 對細胞的自我更新及轉移侵襲有抑制的效果。我們進一步又發現CARD domain下游分子粒腺體抗病毒蛋白 (mitochondrial antiviral signaling protein, MAVS) 在細胞中被抑制表現後,細胞轉移及侵襲的能力亦顯著提升,顯示 RIG-I 很可能透過 MAVS 分子調控肝癌細胞的轉移及侵襲能力。總合上述,本篇研究證實,RIG-I 在肝癌中可能扮演抑癌基因的角色,對於肝癌細胞的致腫瘤性、自我更新及轉移侵襲能力有明顯的影響,可作為未來研究肝癌治療一個新的方向。zh_TW
dc.description.abstractInherited variation in pattern recognition receptors (PRRs) has been reported that it may be correlated to several types of cancer, including liver cancer. Retinoic acid-inducible gene-I (RIG-I), also named DDX58, is one of the PRRs and generally known as an RNA virus sensor in innate immune response. Nonetheless, recent studies have reported RIG-I may be involved in the embryogenesis and cell differentiation without any signs of viral infection. RIG-I knockout mice exhibited hepatic cell death during embryogenesis. Importantly, a lower expression level of RIG-I was observed in prostate, breast, melanocyte and astrocyte cancer cells as compared with their normal counterparts. However, its expression level and biologic effect in liver cancer remain poorly understood. Hence, we attempted to explore the function and the regulatory mechanism of RIG-I in hepatocellular carcinoma (HCC). In our study, we first demonstrated RIG-I mRNA expression level in the tumors of HCC patients were significantly lower than in their adjacent normal tissues, and the expression levels of RIG-I in tumor parts were negatively correlated to their tumor grades. In addition, RIG-I knockdown cells and RIG-I mutated cells exhibited greater tumorigenicity as compared with their parental cells in NOD/SCID mice. We also showed that even 1000 RIG-I mutated cells possessed tumorigenicity in NOD/SCID mice, and this phenomenon is one of the properties of cancer stem cell. We therefore postulated that RIG-I may play a key regulator in cancer stem cell. Our results indicated knockdown of RIG-I increased self-renewal ability, and the cancer stem cell markers expression increased as well. Furthermore, RIG-I could influence the expression level of epithelial- mesenchymal transition markers in hepatoma cells. Our data demonstrated overexpression of RIG-I suppressed invasion/migration capacity, while RIG-I knockdown cells possessed augmented invasion/migration capacity. The existence of a non-mutated caspase recruitment domain (CARD domain) in RIG-I may play an important role in suppressing of self-renewal ability and invasion/migration capacity. Due to the importance of CARD domain, we also demonstrated knockdown of mitochondrial antiviral signaling protein (MAVS), the RIG-I CARD domain downstream molecule, increased invasion/migration capacity as well. This may imply MAVS was a regulatory molecule of RIG-I mediated invasion/migration. Based on our observations, we purposed RIG-I may be a tumor suppressor, and the induction of RIG-I expression level can be a potential remedy strategy of HCC progression.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:02:57Z (GMT). No. of bitstreams: 1
ntu-102-R00447008-1.pdf: 2349618 bytes, checksum: e3d9fb223060039cb0b206cf33794845 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 i
Abstract ii
Chapter 1 Introducion 1
1.1 An overview of hepatocellular carcinoma (HCC) 2
1.2 Retinoic acid-inducible gene-I (RIG-I) and cancer 4
1.3 Cancer promotion and progression characteristics 8
1.4 The cancer stem cell theory and tumor progression 9
1.5 Motivation and purpose 10
Chapter 2 Materials and Methods 11
Chapter 3 Results 18
3.1 RIG-I expression is reduced in human liver cancer. 19
3.2 RIG-I suppresses tumorigenicity in vivo of HCC cells. 19
3.3 RIG-I is involved in self-renewal ability of HCC cells. 21
3.4 RIG-I suppresses invasion and migration capacities of HCC cells. 23
3.5 MAVS may be involved in the RIG-I-mediated invasion and migration regulation. 25
Chapter 4 Discussion 27
Chapter 5 Figures and figure legends 33
Chapter 6 Referneces 64
dc.language.isoen
dc.title探討RIG-I (視黃酸誘導基因-I) 在肝細胞癌中之角色zh_TW
dc.titleEvaluation the Role of RIG-I in Hepatocellular Carcinomaen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王朝鐘(Chau-Jong Wang),蕭宏昇(Michael Hsiao),洪文俊(Wen-Chun Hung)
dc.subject.keyword肝癌,視黃酸誘導基因-I,致腫瘤性,自我更新,癌症轉移侵襲,zh_TW
dc.subject.keywordHepatocellular carcinoma (HCC),Retinoic acid-inducible gene-I (RIG-I),Tumorigenicity,Self-renewal,Invasion and metastasis,en
dc.relation.page73
dc.rights.note未授權
dc.date.accepted2013-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved