請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17242完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅昭銘(Chao-ming fu) | |
| dc.contributor.author | Han-shen Tasi | en |
| dc.contributor.author | 蔡瀚陞 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:02:37Z | - |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | [1] A. K. Gupta and M. Gupta, Bio materials 26, 3995(2005).
[2] L. C. Shen, M. Herzl, Z. Yu-Xing, and S. Xian-di, 'Analysis of the Parallel-Disk Sample Holder for Dielectric Permittivity Measurement,' Geoscience and Remote Sensing, IEEE Transactions on, vol. GE-25, pp. [3] N. L. Buck, 'Calibration of dielectric constant probes using salt solutions of unknown conductivity,' Instrumentation and Measurement, IEEE Transactions on, vol. 45, pp. 84-88, 1996. [4] S. Darayan, C. Liu, L. C. Shen, and D. Shattuck, 'Measurement of electrical properties of contaminated soil,' Geophysical Prospecting, vol. 46, pp. 477-488, 1998. [5] J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, 'Improved technique for determining complex permittivity with the transmission/reflection method,' Microwave Theory and Techniques, IEEE Transactions on, vol. 38, pp. 1096-1103, 1990. [6] K. T. M. L. P. L. M. Hajian, 'Measurements of complex permittivity with waveguide resonator using perturbation technique,' Microwave and Optical Technology Letters, vol. 21, pp. 269-272, 1999. [7] Agilent Technologies, 'Agilent Basics of Measuring the Dielectric properties of Materials,Agilent Literature Number5989-2589EN, June 26, 2006. [8] J. Zhang, A. Tombak, J. P. Maria, B. Boyette, G. T. Stauf, A. I. Kingon, and A. Mortazawi, 'Microwave characterization of thin film BST material using a simple measurement technique,' in Microwave Symposium Digest, 2002 IEEE MTT-S International, pp. 1201-1204, 2002. [9] Miura, T. , 'A Proposal for Standard to Compare Qfactor Evaluation Accuracy of Microwave Resonator' Microwave Symposium Digest, 2006. IEEE MTT-S International, pp. 1936-1966. [10] Richard G. Carter, ' Accuracy of Microwave Cavity Perturbation Measurements', IEEE Transactions On Microwave Theory and Techniques, vol. 49, NO. 5, MAY 2001. [11] Yan Ye', Andrey Sklyuyevl, Cevdet Akyel , Petru Ciureanu, 'Automatic System to Measure Complex Permittivity and Permeability using Cavity Perturbation Techniques' Instrumentation and Measurement Technology Conference - IMTC 2007 Warsaw, Poland, May 1-3, 2007 [12] P.C. Fannin, C.N. Marin , I. Malaescu, N. Stefu, ' An investigation of the microscopic and macroscopic properties of magnetic fluids' Physica B: Condensed Matter Vol.388,pp. 87–92, 15 January 2007. [13] R.A.WALDRON, M.A., A.Inst.P. 'Pertubation theory of resonant cavities' The Institution of Electrical Engineers Monograph No. 373 E, Apr. 1960. [14] Linfeng Chen, C. K. Ong, and B. T. G. Tan, ' Amendment of Cavity Perturbation Method for Permittivity Measurement of Extremely Low-Loss Dielectrics', IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 48, NO. 6, DECEMBER 1999. [15] WILLIAM B. WEIR, 'Automatic Measurement of Complex Dielectric Constant ', PROCEEDINGS OF THE IEEE, VOL. 62, NO. 1, JANUARY 1974. [16] P C Fannin, P A Perov and S W Charles, ' On the resonant frequency of ferrofluids subjected to perpendicular and parallel polarizing fields' J. Phys. D: Appl. Phys. 32, 1999. [17] 傅昭銘, '奈米科技-基礎、應用與實作', pp. 3-33, 2005. [18] 賴炤銘,李錫隆, '奈米材料的特殊效應與應用',CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI) Vol. 61, No. 4, pp.585~597, December. 2003. [19] J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 109, 083921 (2011) [20] Mathew, K. T. 2005. Perturbation Theory. Encyclopedia of RF and Microwave Engineering [21] http://en.wikipedia.org/wiki/Cavity_perturbation_theorya | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17242 | - |
| dc.description.abstract | 共振腔微擾法是一種量測物質介電常數及磁導率的量測方法。共振腔微擾法使用網路分析儀量測一電磁波空振腔體在放入代測物後所產生之共振頻率偏移與腔體內品質因數Q 值變化,由此推算代測物之介電常數及磁導率。共振腔微擾法有非常好的精確度以及只需要極少量樣品的優點。
Fe3O4奈米磁流體近年來廣泛運用在生醫領域中,生醫檢測更是其中著重發展的目標之一。本研究以量測Fe3O4結合分子後的磁導率變化,探討以共振腔微擾法作生醫檢測應用之可行性。 本研究使用共振腔微擾法量測四氧化三鐵Fe3O4奈米磁流體以及Fe3O4結合PEG或FITC-NHS ester分子後之磁流體溶液在2Ghz~5Ghz之高頻交變磁場下之磁導率。本研究使用一長方體共振腔,量測所用的電磁波模態為TE102與TE104。實驗所用的Fe3O4奈米磁顆粒是以化學沉積法製作,磁顆粒樣品平均粒徑大小約為25nm,表面zeta電位約為+50mv。 | zh_TW |
| dc.description.abstract | Cavity resonator perturbation technique is a technique for measuring the complex permeability and dielectric constant of materials. This method uses network analyzer to measure the shift of resonant frequency and the change of quality factor in a resonant cavity. These performance changes of cavity can be used to derive the complex permeability and dielectric constant. Cavity resonator perturbation technique has very good accuracy and only needs small volume of measured samples.
The Fe3O4 ferrofluids have been widely used for biomedical applications recent years, and the biomedical detection is one of the significant application of it. This study would like to provide a possibility of application on biomedical detection by using cavity resonator perturbation technique. This study use cavity resonator perturbation technique to measure the complex permeability of three different samples: The pure Fe3O4 ferrofluids and Fe3O4 ferrofluids coated by PEG or FITC-NHS ester. The measurement frequency is at 2GHz to 5Ghz. The used cavity is a rectangular cavity resonator and the dominant mode of the measurement is TE102 and TE104. The Fe3O4 nanoparticles sample is prepared by chemical disposition method, its average particle size is 25nm, and the zeta potential is 50mv. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:02:37Z (GMT). No. of bitstreams: 1 ntu-102-R99222040-1.pdf: 4078991 bytes, checksum: a0d670dcd273fb94cb97832d5b473468 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 # 誌謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 viii 表目錄 xi Chapter1 緒論 1 1.1 研究動機 1 1.2 奈米材料之結構與特性 1 1.2.1 小尺寸效應(small size effect) 2 1.2.2 表面效應(surface effect) 2 1.2.3 量子尺寸效應 3 1.2.4 奈米磁性材料特殊的磁學性質 3 1.3 奈米磁流體 4 1.3.1 奈米磁流體的製備 5 1.4 奈米磁流體在生醫上的應用 5 1.4.1 磁性標靶藥劑 5 1.4.2 熱炙治療 (hyperthermia) 6 Chapter 2 文獻回顧 7 2.1 物質的電磁特性 7 2.1.1 介電常數(permittivity) 7 2.1.2 磁導率(permeability) 7 2.2 材料電磁特性量測方法 8 2.2.1 平行板法(Parallel Plate Method) 8 2.2.2 同軸探針法(Coaxial Probe Method) 8 2.2.3 傳輸線法(Transmission Line Method) 9 2.2.4 自由空間法(Free-Space Method) 10 2.2.5 共振腔微擾法(Cavity Perturbation Method) 11 2.2.6 常用量測方法之特點比較 12 2.3 網路分析儀基本理論 13 2.4 共振腔基本理論 14 2.4.1 共振腔微擾法基本理論推導 14 2.4.2 矩形波導管中的電磁場分佈 16 2.4.3 矩形共振腔的電磁場分佈 19 2.4.4 品質因數Q (Quality factor) 20 2.4.5 複介電常數公式推導 21 2.4.6 複磁導率公式推導 22 Chapter 3 實驗方法與儀器 24 3.1 樣品製備 24 3.1.1 奈米磁流體之製備裝置 24 3.1.2 磁流體之製備 24 3.1.3 Fe3O4磁顆粒結合分子之製備 25 3.1.4 Sample holder 26 3.2 實驗設備 27 3.2.1 向量網路分析儀 27 3.2.2 共振腔 27 3.2.3 固定磁場系統 28 3.2.4 測量流程 28 3.2.5 雷射光散射法粒徑/電位分析儀(Zetasizer) 30 3.3 用HFSS程式模擬共振腔內電磁場分佈 31 3.3.1 共振空腔設計與模擬 31 3.3.2 探針參數對品質因數Q影響之模擬 34 3.3.3 共振腔內電磁波TE mode之模擬 35 3.3.4 共振腔微擾法理論之模擬 43 3.4 數據分析方法 45 3.4.1 LOESS smoothing法 45 3.4.2 Lorentz fit法 47 3.4.3 數據分析與計算流程 50 Chapter 4 實驗結果與討論 51 4.1 Zetasizer量測結果 51 4.2 介電常數量測精準度 51 4.3 磁導率量測精準度 52 4.3.1 sample holder對磁導率量測之影響 52 4.4 不同濃度磁流體之交流磁導率磁導率量測 54 4.5 外加固定磁場下磁流體之交流磁導率量測 56 4.5.1 外加一強磁場下之交流磁導率 56 4.5.2 外加一弱磁場下之交流磁導率 58 4.6 不同濃度PEG奈米磁流體之磁導率量測 60 4.7 奈米磁顆粒結合FITC-NHS ester分子後之磁導率量測 62 Chapter 5 結論與討論 64 參考文獻 65 | |
| dc.language.iso | zh-TW | |
| dc.title | 共振腔微擾法量測奈米磁流體磁導率探討 | zh_TW |
| dc.title | Cavity resonator perturbation technique for probing the permeability of ferrofluids | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周傳心,林啟萬 | |
| dc.subject.keyword | 空振腔微擾法,磁導率,四氧化三鐵,磁流體,生醫檢測, | zh_TW |
| dc.subject.keyword | Cavity resonator perturbation technique,complex permeability,Fe3O4,ferrofluid,biomedical detection, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
