Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17220
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張育森(Yu-Sen Chang)
dc.contributor.authorKai-Chun Changen
dc.contributor.author張凱淳zh_TW
dc.date.accessioned2021-06-08T00:01:37Z-
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation王昭月、曾夢蛟. 2010. 利用葉綠素螢光與有效授粉估測甜椒之耐熱性. 臺灣農業研究 59:237-248.
王進學. 2005. 以膜熱穩定性技術評估菊花開花之熱延遲. 國立臺灣大學園藝學系碩士論文. 臺北.
王嘉祥. 2005. 四季秋海棠栽培技術. 種子世界 11:36.
行政院農業委員會. 2012. 臺灣草花生草概況. June 22, 2013. <http://kmweb.coa.gov.tw/subject/ct.asp?xItem=544642&ctNode=2297&mp=146&kpi=0>.
李哖. 2005. 花壇植物, p. 781-788. In: 臺灣農家要覽增修訂三版策劃委員會編著 (eds.). 臺灣農家要覽 農作篇(二). 3 ed. 行政院農業委員會. 臺北.
李讚壽. 1991. 非洲鳳仙花和四季秋海棠之周年生產品質與品種間耐熱性之比較. 國立臺灣大學園藝學系碩士論文. 臺北.
周慶安. 2008. 溫度對非洲鳳仙花生育及光合作用之影響. 國立臺灣大學園藝學系博士論文. 臺北.
周慶安、李哖. 2008. 溫度對非洲鳳仙花生育及光合作用的影響. 臺灣園藝 54:139-150.
林鈴娜. 2011. 水楊酸對提升花卉作物溫度逆境耐受性之研究. 國立臺灣大學園藝系博士論文. 臺北.
林鈴娜、張育森. 2009. 水楊酸對植物抗高溫逆境之作用. 臺灣園藝 55:193-206.
徐向麗、易克、蔣紅梅、李永平、馬文廣、鄭昀曄、姚恆. 2010. 外源海藻糖對幹旱脅迫下煙草幼苗抗旱性的影響. 安徽農業科學:18675-18677.
張采依. 2012. 薄層屋頂綠化植物選擇與應用之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
許晃雄. 2001. 臺灣環境變遷與全球氣候變遷衝擊之評析. 行政院國家科學委員會補助專題研究計畫成果報告. 臺北.
陳思如. 2007. 非洲菊耐熱指標與切花生理. 國立臺灣大學園藝學系碩士論文. 臺北.
陳美蘭. 2010. 青花菜AV531耐熱特性之探討. 國立臺灣大學園藝學系碩士論文. 臺北.
葉小梅、盧忠華、蔡麗萍、王彩云. 2007. 4 種引進月季品種葉片耐熱性生理、生化指標初探. 廣東林業科技 23:80-82.
趙翠榮、趙開斌、唐前勇、彭萍、李瑞琪. 2008. 四季秋海棠的繁殖與栽培技術. 農技服務:25-99.
劉忠國、曹辰興、王濤、季春梅、陳玉茶. 2010. 水楊酸與氯化鈣單一及複配誘導對黃瓜幼苗耐熱性之影響. 山東農業科學 4:27-30.
劉祖祺、張石城. 1994. 植物抗性生理學.ed. 中國農業出版社, 中國.
潘瑞熾. 2006. 植物生理學.ed. 藝軒出版社, 臺北.
戴廷恩、謝廷芳、陳淑佩. 2008. 全球暖化趨勢對臺灣花卉生產之影響. 作物, 環境與生物資訊 5:73-75.
謝騄璘. 2006. 飽合脈衝葉綠素螢光影響系統之建立及於植物光熱逆境生理之應用. 國立臺灣大學園藝學系碩士論文. 臺北.
Adams, W., III, B. Demmig-Adams, K. Winter, and U. Schreiber. 1990. The ratio of variable to maximum chlorophyll fluorescence from photosystem II, measured in leaves at ambient temperature and at 77K, as an indicator of the photon yield of photosynthesis. Planta 180:166-174.
Ahn, Y.J., K. Claussen, and J.L. Zimmerman. 2004. Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars. Plant Sci. 166:901-911.
Ali, Q. and M. Ashraf. 2011. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: Growth, photosynthesis, water relations and oxidative defence mechanism. J. Agron. Crop Sci. 197:258-271.
Apel, K. and H. Hirt. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399.
Apostolova, E.L. and A.G. Dobrikova. 2011. Effect of high temperature and UV-A radiation on photosystem II, p. 57-591. In: M. Pessarakli (eds.). Handbook of plant and crop stress. 3 ed. CRC Press, Boca Raton. U.S.A.
Armitage, A.M. 1994. Ornamental bedding plants.ed. CAB international.
Aro, E.M., I. Virgin, and B. Andersson. 1993. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1143:113-134.
Búrquez, A. 1987. Leaf thickness and water deficit in plants: A tool for field studies. J. Expt. Bot. 38:109-114.
Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Expt. Bot. 55:1607-1621.
Barba-Espín, G., M.J. Clemente-Moreno, S. Álvarez, M.F. García-Legaz, J.A. Hernández, and P. Díaz-Vivancos. 2011. Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biology 13:909-917.
Ben-Asher, J., A. Garcia y Garcia, and G. Hoogenboom. 2008. Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica 46:595-603.
Berry, J. and O. Bjorkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491-543.
Bowler, C., M.V. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Biol. 43:83-116.
Briantais, J.M., J. Dacosta, Y. Goulas, J.M. Ducruet, and I. Moya. 1996. Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, Fo: A time-resolved analysis. Photosynthesis Res. 48:189-196.
Bush, D.S. 1995. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Biol. 46:95-122.
Campos, P.S., V.N. Quartin, J.C. Ramalho, and M.A. Nunes. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol. 160:283-292.
Carpentier, R. 1999. Effect of high-temperature stress on the photosynthetic apparatus, p. 337-348. In: M. Pessarakli (eds.). Handbook of plant and crop stress. 2 ed. CRC Press, Boca Raton. U.S.A.
Chen, T.H.H. and N. Murata. 2008. Glycinebetaine: An effective protectant against abiotic stress in plants. Trends Plant Sci. 13:499-505.
Chen, Z., J. Malamy, J. Henning, U. Conrath, P. Sánchez-Casas, H. Silva, J. Ricigliano, and D.K. Klessig. 1995. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc. Natl. Acad. Sci. 92:4134-4137.
Compbell, N. and J. Reece. 2002. Membrane structure and function, p. 138-154. In: N. Compbell and J. Reece (eds.). Biology. 6 ed. Benjamin Cummings, San Francisco. U.S.A.
Crafts-Brandner, S.J. and M.E. Salvucci. 2000. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. 97:13430-13435.
Crafts-Brandner, S.J. and M.E. Salvucci. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129:1773-1780.
Darbah, J.N.T., T.D. Sharkey, C. Calfapietra, and D.F. Karnosky. 2010. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Environ. Pollution 158:1008-1014.
Dat, J., S. Vandenabeele, E. Vranova, M. Van Montagu, D. Inzé, and F. Van Breusegem. 2000. Dual action of the active oxygen species during plant stress responses. Cellular Mo. Life Sci. 57:779-795.
Dat, J.F., C.H. Foyer, and I.M. Scott. 1998a. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118:1455-1461.
Dat, J.F., H. Lopez-Delgado, C.H. Foyer, and I.M. Scott. 1998b. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116:1351-1357.
DeEll, J.R., O. van Kooten, R.K. Prange, and D.P. Murr. 1999. Applications of chlorophyll fluorescence techniques in postharvest physiology. Hort. Rev. 23:69-107.
Dole, J.M. 2005. Floriculture. 2 ed. Pearson-Prentice Hall, N.J. U.S.A.
Dubbe, D.R., G.D. Farquhar, and K. Raschke. 1978. Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata. Plant Physiol. 62:413-417.
Farooq, M., T. Aziz, M. Hussain, H. Rehman, K. Jabran, and M. Khan. 2008. Glycinebetaine improves chilling tolerance in hybrid maize. J. Agron. Crop Sci. 194:152-160.
Feller, U., S.J. Crafts-Brandner, and M.E. Salvucci. 1998. Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol. 116:539-546.
Field, C., J.T. Ball, and J. Berry. 1989. Photosynthesis: Principles and field techniques, p. 209-253. In: R. Pearcy, J. Ehleringer, H. Mooney and P. Rundel (eds.). Plant Physiological Ecology. Springer Netherlands.
Foyer, C.H., M. Lelandais, and K.J. Kunert. 2006. Photooxidative stress in plants. Physiol. Plant. 92:696-717.
Garcia, A.B., J. Engler, S. Iyer, T. Gerats, M. Van Montagu, and A.B. Caplan. 1997. Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol. 115:159-169.
Georgieva, K. 1999. Some mechanisms of damage and acclimation of the photosynthetic apparatus due to high temperature. Bulg. J. Plant Physiol 25:89-99.
Goddijn, O.J. and K. van Dun. 1999. Trehalose metabolism in plants. Trends Plant Sci. 4:315-319.
Gombos, Z., H. Wada, E. Hideg, and N. Murata. 1994. The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol. 104:563-567.
Gong, M., S.N. Chen, Y.Q. Song, and Z.G. Li. 1997. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Functional Plant Biol. 24:371-379.
Gong, M., A.H. van der Luit, M.R. Knight, and A.J. Trewavas. 1998. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol. 116:429-437.
González, L. and M. González-Vilar. 2003. Determination of relative water content, p. 207-212. Handbook of plant ecophysiology techniques. Springer.
Greer, D.H. and C. Weston. 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Functional Plant Biol. 37:206-214.
Guo, Y.P., H.F. Zhou, and L.C. Zhang. 2006. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Scientia Hort. 108:260-267.
Han, X., R. Li, and J. Wang. 1997. Cellular structural comparison between different thermo-resistant cultivars of Raphanus sativus L. under heat stress. J. Wuhan Bot. Res. 2:11.
Handa, S., A.K. Handa, P.M. Hasegawa, and R.A. Bressan. 1986. Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol. 80:938-945.
Hasanuzzaman, M., K. Nahar, M.M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Intl. J. Mol. Sci. 14:9643-9684.
Havaux, M. and F. Tardy. 1996. Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: Possible involvement of xanthophyll-cycle pigments. Planta 198:324-333.
Hendrickson, L., R. Furbank, and W. Chow. 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Res. 82:73-81.
Horton, M.L. and B.A. Chaugule. 1953. Effect of stage of seedling development upon heat tolerance in bromegrasses. Journal of Range Management 6:320-324.
Ikuma, H. 1972. Electron transport in plant respiration. Annu. Rev. Plant Physiol. 23:419-436.
Inoue, N., T. Emi, Y. Yamane, Y. Kashino, H. Koike, and K. Satoh. 2000. Effects of high-temperature treatments on a thermophilic cyanobacterium Synechococcus vulcanus. Plant Cell Physiol. 41:515-522.
Ismail, A.M. and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762-1768.
Jiang, Y. and B. Huang. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 41:436-442.
Jiang, Y. and B. Huang. 2007. Effects of calcuim on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J. Expt. Bot. 52:341-349.
Jolivet, Y., F. Larher, and J. Hamelin. 1982. Osmoregulation in halophytic higher plants: The protective effect of glycine betaine against the heat destabilization of membranes. Plant Sci. Lett. 25:193-201.
Kaushal, N., K. Gupta, K. Bhandhari, S. Kumar, P. Thakur, and H. Nayyar. 2011. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol. Mol. Biol. Plants 17:203-213.
Knaff, D.B. and D.I. Arnon. 1971. On two photoreactions in system II of plant photosynthesis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 226:400-408.
Larkindale, J. and M.R. Knight. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128:682-695.
Li, S., F. Li, J. Wang, W.E.N. Zhang, Q. Meng, T.H.H. Chen, N. Murata, and X. Yang. 2011. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ. 34:1931-1943.
Lichtenthaler, H.K. and U. Rinderle. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Rev. Ana. Chem. 19:S29-S85.
Lin, L.N., K.L. Huang, H. Okuibo, and Y.S. Chang. 2011. Alleviation of high temperature stress in wax begonia (Begonia × semperflorens-cultorum Hort.) by salicylic acid. J. Faculty Agr. Kyushu Univ. Japan.
Liu, X. and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40:503-510.
Liu, X. and B. Huang. 2008. Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass. J. Plant Physiol. 165:1947-1953.
Liu, Y.P., H.T. Liu, and W.D. Huang. 2009. The effect of calcium on the salicylic acid-induced thermotolerance in young grape plants (Vitis vinifera L.) and is associated with Ca2+-ATPase in plasma membrane. In “Bioinformatics and Biome. Eng., 2009. ICBBE 2009. 3rd Intl. Conf.”, pp. 1-8.
Lobell, D.B. and G.P. Asner. 2003. Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032.
Lugan, R., M.F. Niogret, L. Kervazo, F.R. Larher, J. Kopka, and A. Bouchereau. 2009. Metabolome and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into ESK1 function. Plant Cell Environ. 32:95-108.
Luo, Y., F. Li, G. Wang, X. Yang, and W. Wang. 2010. Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biologia Plant. 54:495-501.
Mamedov, M., H. Hayashi, H. Wada, P. Mohanty, G. Papageorgiou, and N. Murata. 1991. Glycinebetaine enhances and stabilizes the evolution of oxygen and the synthesis of ATP by cyanobacterial thylakoid membranes. Federation European Biochem. Soci. Lett. 294:271-274.
Marcum, K.B. 1998. Cell membrane thermostability and whole-plant heat tolerance of kentucky bluegrass. Crop Sci. 38:1214-1218.
Mazorra, L.M., N. Holton, G.J. Bishop, and M. Núñez. 2011. Heat shock response in tomato brassinosteroid mutants indicates that thermotolerance is independent of brassinosteroid homeostasis. Plant Physiol. Biochem. 49:1420-1428.
Molina-Bravo, R., C. Arellano, B.R. Sosinski, and G.E. Fernandez. 2011. A protocol to assess heat tolerance in a segregating population of raspberry using chlorophyll fluorescence.ed. Elsevier, Amsterdam, PAYS-BAS.
Mori, K., N. Goto-Yamamoto, M. Kitayama, and K. Hashizume. 2007. Loss of anthocyanins in red-wine grape under high temperature. J. Expt. Bot. 58:1935-1945.
Nounjan, N., P.T. Nghia, and P. Theerakulpisut. 2012. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Plant Physiol. 169:596-604.
Osório, M.L., J. Osório, and A. Romano. 2013. Photosynthesis, energy partitioning, and metabolic adjustments of the endangered Cistaceae species Tuberaria major under high temperature and drought. Photosynthetica 51:75-84.
Oukarroum, A., S.E. Madidi, and R.J. Strasser. 2012. Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): A chlorophyll a fluorescence study. Plant Biosystems:1-7.
Peñuelas, J. and I. Filella. 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 3:151-156.
Pichereau, V., S. Bourot, S. Flahaut, C. Blanco, Y. Auffray, and T. Bernard. 1999. The osmoprotectant glycine betaine inhibits salt-induced cross-tolerance towards lethal treatment in Enterococcus faecalis. Microbiology 145:427-435.
Pilon-Smits, E.A., N. Terry, T. Sears, H. Kim, A. Zayed, S. Hwang, K. van Dun, E. Voogd, T.C. Verwoerd, and R.W. Krutwagen. 1998. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J. Plant Physiol. 152:525-532.
Porter, J.R. 2005. Rising temperatures are likely to reduce crop yields. Nature 436:174-174.
Pushpalatha, P., P. Sharma-Natu, and M.C. Ghildiyal. 2008. Photosynthetic response of wheat cultivar to long-term exposure to elevated temperature. Photosynthetica 46:552-556.
Raison, J., J. Berry, P. Armond, and C. Pike. 1980. Membrane properties in relation to the adaptation of plants to temperature stress, p. 261-273. In: N. C. Turner and P. J. Kramer (eds.). Adaptation of Plants to Water and High Temperature Stress. Wiley-Interscience, NY. U.S.A.
Rasheed, R., A. Wahid, M. Farooq, I. Hussain, and S.A. Basra. 2011. Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regulat. 65:35-45.
Raven, E. 2002. Peroxidase-catalyzed oxidation of ascorbate structural, spectroscopic and mechanistic correlations in ascorbate peroxidase, p. 317-349. In: A. Holzenburg and N. Scrutton (eds.). Enzyme-Catalyzed Electron and Radical Transfer. Vol. 35.ed. Springer US.
Richards, A., S. Krakowka, L. Dexter, H. Schmid, A. Wolterbeek, D. Waalkens-Berendsen, A. Shigoyuki, and M. Kurimoto. 2002. Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chem. Toxicology 40:871-898.
Shen, Z.Y. and H.S. Zhu. 1993. The effects of high temperature on growth and development and the differences of heat tolerance in common bean genotypes. Scientia Agr. Sinica 3:007.
Shi, Q., Z. Bao, Z. Zhu, Q. Ying, and Q. Qian. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulat. 48:127-135.
Singer, S.J. and G.L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720-731.
Sivakumar, P., P. Sharmila, and P.P. Saradhi. 1998. Proline suppresses Rubisco activity in higher plants. Biochem. Biophysical Res. Commun. 252:428-432.
Smart, R.E. 1974. Rapid estimates of relative water content. Plant Physiol. 53:258-60.
Spreitzer, R.J. and M.E. Salvucci. 2002. Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme. Annu. Rev. Plant Biol. 53:449-475.
Syvertsen, J.P. and Y. Levy. 1982. Diurnal changes in citrus leaf thickness, leaf water potential and leaf to air temperature difference. J. Expt. Bot. 33:783-789.
Taiz, L. and E. Zeiger. 2006. Photosynthesis, p. 125-220. Plant Physiol. 4th ed. Sinauer Associates Press, Sunderland, MA., U.S.A.
Tan, W., Q.w. Meng, M. Brestic, K. Olsovska, and X. Yang. 2011. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J. Plant Physiol. 168:2063-2071.
Tang, Y., X. Wen, Q. Lu, Z. Yang, Z. Cheng, and C. Lu. 2007. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 143:629-638.
Uchneat, M.S. 2006. Impatiens, p. 277-299. In: N. Anderson (eds.). Flower breeding and genetics.ed. Springer Netherlands.
United States Department of Agriculture. 2012. Crop Production Annual Summary.
May 17. 2013. <http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1047>.
United States Department of Agriculture. 2009. Agricultural Science Poised to Make Major Contributions to Health, Environmental Challenges. Scuse, M.T. and H. Hamer. Oct. 8. 2013. <http://www.usda.gov/wps/portal/usda/usdahome?contentidonly=true&contentid=2009/10/0501.xml>.
van Zanten, M., T. Ritsema, J.K. Polko, A. Leon-Reyes, L.A. Voesenek, F.F. Millenaar, C.M. Pieterse, and A.J. Peeters. 2012. Modulation of ethylene-and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate. Planta 235:677-685.
Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Biol. 42:579-620.
Waditee, R., Y. Tanaka, K. Aoki, T. Hibino, H. Jikuya, J. Takano, T. Takabe, and T. Takabe. 2003. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278:4932-4942.
Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environ. Expt. Bot. 61:199-223.
Wang, C.H., D.M. Yeh, and C.S. Sheu. 2008. Heat tolerance and flowering-heat-delay sensitivity in relation to cell membrane thermostability in chrysanthemum. J. Amer. Soc. Hort. Sci. 133:754-759.
Wang, L.J., L. Fan, W. Loescher, W. Duan, G.J. Liu, J.S. Cheng, H.B. Luo, and S.H. Li. 2010. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BioMed Ctr. Plant Biol. 10:34.
Wang, L.J. and S.H. Li. 2006. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170:685-694.
Weng, J.H. and M.F. Lai. 2005. Estimating heat tolerance among plant species by two chlorophyll fluorescence parameters. Photosynthetica 43:439-444.
Wu, M.T. and S.J. Wallner. 1983. Heat Stress Responses in Cultured Plant Cells: Development and Comparison of Viability Tests. Plant Physiol. 72:817-820.
Yamada, M., T. Hidaka, and H. Fukamachi. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Hort. 67:39-48.
Yamane, Y., Y. Kashino, H. Koike, and K. Satoh. 1997. Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynthesis Res. 52:57-64.
Yang, T. and B. Poovaiah. 2002. Hydrogen peroxide homeostasis: Activation of plant catalase by calcium/calmodulin. Proc. Natl. Acad. Sci. 99:4097-4102.
Yang, X., Z. Liang, and C. Lu. 2005. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol. 138:2299-2309.
Zhang, S., Q. Li, K. Ma, and L. Chen. 2001. Temperature-dependent gas exchange and stomatal/non-stomatal limitation to CO2 assimilation of Quercus Liaotungensis under midday high irradiance. Photosynthetica 39:383-388.
Zhao, H.J. and J.F. Tan. 2005. Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves. Photosynthetica 43:473-476.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17220-
dc.description.abstract非洲鳳仙(Impatiens walleriana Hook. f.)與四季海棠(Begonia × semperflorens-cultorum Hort.)是臺灣重要的冷季花壇植物,佔全臺冷季草花總產量前二名。由於全球氣候不斷暖化,促使冷季草花因高溫影響,生長與品質表現不佳。本研究先探討葉綠素螢光作為冷季作物耐熱性指標之可行性,其次探討單一化學藥劑與複合藥劑對提高非洲鳳仙與四季海棠高溫耐受性之影響。
在以葉綠素螢光作為耐熱生理指標方面,葉綠素螢光偵測可快速、有效且精確分析植物之耐熱性(heat tolerance),故本研究以此作為高溫逆境(heat stress)之生理評估依據,探討植物於特定時間下之關鍵溫度,作為評斷植物對高溫之耐受程度。結果顯示,冷季蔬菜利用40oC處理30分鐘之相對葉綠素螢光值,作為判斷冷季蔬菜耐熱程度之依據;冷季草花則以45oC處理30分鐘之相對葉綠素螢光值,作為判斷耐熱程度之技術。
以單一藥劑提高非洲鳳仙高溫耐受性方面,本研究將非洲鳳仙‘小精靈’(I.‘Super Elfin’)幼苗於高溫前2小時,預先進行葉片噴施單一藥劑水楊酸(salicylic acid,SA) (50、100、150 μM)、氯化鈣(calcium chloride,Ca) (5、10、15 mM)、甜菜鹼(glycine betaine,GB) (5、10、15 mM)及海藻糖(trehalose,Tre) (0.5、1.5、2.5 mM),隨後予以短暫高溫(45oC, 30分鐘)處理,高溫後立即測量葉綠素螢光值。結果顯示,100 μM SA、10 mM Ca、10 mM GB與1.5 mM Tre四種藥劑均能有提高非洲鳳仙幼苗於高溫下之耐熱性,對提高之相對葉綠素螢光值、維持正常之光合作用速率、維持較高之葉片品質與完整性、減少因高溫失水導致葉片溫度降低及提高幼苗存活率有助益。
單一藥劑與複合藥劑提高非洲鳳仙高溫耐受性之研究方面,高溫逆境前2小時葉片噴施有效單一藥劑(100 μM SA、10 mM Ca、10 mM GB、1.5 mM Tre),及複合藥劑(50 μM SA+ 5 mM Ca、50 μM SA+ 5 mM GB及50 μM SA+ 0.75 mM Tre),並以短暫高溫(45oC, 30分鐘)評估藥劑促進非洲鳳仙耐熱之有效性。結果顯示,50 μM SA + 5 mM Ca藥劑有效提高相對葉綠素螢光值、淨光合作用能力及Rubsico利用效率,有效提高非洲鳳仙對高溫之耐受能力,進一步探討不同SA與Ca濃度比例(25 μM SA + 7.5 mM Ca、50 μM SA + 5 mM Ca、75 μM SA + 2.5 mM Ca)之複合藥劑,結果顯示,75 μM SA + 2.5 mM Ca組合最能提高非洲鳳仙對高溫之耐受性。
以單一藥劑與複合藥劑提高四季海棠於高溫栽培之研究方面,四季海棠‘超級奧運’ (B.‘Super Olympia red’)於高溫逆境前2小時預葉片噴施100 μM SA、10 mM Ca、10 mM GB、1.5 mM Tre、50 μM SA+ 5 mM Ca、50 μM SA+ 5 mM GB及50 μM SA+ 0.75 mM Tre化學藥劑,於臺大人工氣候室35/30oC下栽培14天。結果顯示,外施 SA、 Ca、 GB、 Tre及其複合配方之化學藥劑均能有效提高四季海棠對高溫之耐受性,使植株較緊密,維持外觀品質及光合作用能力,亦保護葉綠素不受高溫降解。綜合藥劑效果與藥劑成本,以藥劑50 μM SA+ 5 mM Ca兼具成本低廉與耐熱潛力之優勢。
葉片噴施化學藥劑為一種簡單、有效率的方法,葉施SA與Ca之複合藥劑有效提高冷季草花之高溫耐受性。葉片噴施50 μM SA+ 5 mM Ca複合藥劑證實可提高非洲鳳仙與四季海棠於短暫高溫或高溫栽培環境之耐受性,耐熱效果更優於單一施用SA或Ca,顯示複合藥劑具有加乘性。以經濟栽培而言,75 μM SA + 2.5 mM Ca複合藥劑兼具耐熱效果與低成本,具備開發耐熱性藥劑之潛力。若考量夏季高溫以外之環境逆境因子如高光度,加入其他藥劑供試,研發耐多重逆境之藥劑,並將冷季草花於夏季實際栽培進行試驗,是未來進一步可研究之方向。
zh_TW
dc.description.abstractImpatiens (Impatiens walleriana Hook. f.) and wax begonia (Begonia × semperflorens-cultorum Hort.) are the most important bedding plants in cool-season. Their year-production amounts are the top two among all cool-season bedding plants in Taiwan. However, the continuous global warming effect has brought negative impacts to the growth and quality of cool-season bedding plants. Therefore, the aim of this research is to select proper types of both single and combined-chemicals that may improve the heat tolerance of impatiens and wax begonias, and to optimize the concentrations of these chemical treatments.
Chlorophyll fluorescence determination method is a fast, efficient and accurate indicator of heat tolerance. Under specific time, the key temperature can be used as an indicator of heat tolerance of plants. The results indicated that the relative chlorophyll fluorescence under 40oC in 30 min treatment and 45oC in 30 min treatment are good indicators for the evaluation of the heat tolerance of cool-season vegetables and cool-season bedding plants, respectively.
In the first part of this research, the impatiens were treated by foliar sprays of salicylic acid (SA) (50, 100, 150 μM), calcium chloride (Ca) (5, 10, 15 mM), glycine betaine (GB) (5, 10, 15 mM) and trehalose (Tre) (0.5, 1.5, 2.5 mM) individually in 2 h and followed by 45oC heating. The result showed that 100 μM SA, 10 mM Ca, 10 mM GB and 1.5 mM increased the relative Fv/Fm value and net photosynthetic rate, survival rate of impatiens, as well as maintain the quality of leaf, lower the loss of leaf water potential under heat stress.
After selecting the appropriate concentrations of the single chemicals (100 μM SA, 10 mM Ca, 10 mM GB、1.5 mM Tre), the detailed studies of the combined-chemicals are approached. The results indicated that 50 μM SA + 5 mM Ca improved the relative Fv/Fm value, net photosynthetic rate and Pn/Ci of impatiens under heat stress. Next, the experiment of the concentration ratio between SA and Ca are performed. The results showed that 75 μM SA + 2.5 mM Ca is the best composition for impatiens to tolerate heat.
Furthermore, the wax begonias are treated with the sprays of 100 μM SA、10 mM Ca、10 mM GB、1.5 mM Tre、50 μM SA+ 5 mM Ca、50 μM SA+ 5 mM GB and 50 μM SA+ 0.75 mM Tre, followed by cultivation under 35/30oC phytotron for 14 days. The results showed that all single- and combined-chemicals are efficient for wax begonia to tolerate high temperature, and they also are able to maintain compact shape, good quality and net photosynthetic rate. Moreover, the chemicals could protect chlorophyll from degradation due to high temperature. Both single- and combined-chemicals improved heat tolerance for wax begonia. Overall, 50 μM SA+ 5 mM Ca is most cost-effective for growers.
In conclusion, according to the result, the spray with 50 μM SA+ 5 mM Ca combined-treatment has been proven to have premium effect for enhancing heat tolerance of impatiens and wax begonias, which is better than applying SA or CA individually. Nevertheless, 75 μM SA + 2.5 mM Ca is considered to be the most cost-effective combined treatment, which can be further applied to commercial grower. For future development of new combined-chemical treatments, considering other stress factors, such as high light intensity, will be necessary.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:01:37Z (GMT). No. of bitstreams: 1
ntu-102-R00628123-1.pdf: 1411613 bytes, checksum: 19cc9803052c9eb74613f7bcfba9612e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄………………………………………………………………………………… i
表目錄……………………………………………………………………………… iii
圖目錄……………………………………………………………………………… iv
縮寫對照表………………. ……………………………………………………….. vi
摘要………………………………………………………………………………… vii
Abstract……………………………………………………………………………... ix
第一章 前言……………………………………………………………………….. 1
第二章 前人研究………………………..………………………………………… 5
一、非洲鳳仙與四季秋海棠之生育特性…………………………………… 5
二、高溫逆境對植物生長之影響…………………………………………… 5
(一)分子層面……………………………………………………………. 6
(二)生理層面…………………………………………………………….. 8
三、藥劑對植物抵抗逆境之影響………….………………………………… 12
(一) 水楊酸(salicylic acid,SA) ……………………………………….. 12
(二) 鈣(calcium,Ca) …………………………………………………… 13
(三) 甜菜鹼(glycine betaine,GB) ……………………………………… 14
(四) 海藻糖(trehalose,Tre) …………………………………………… 15
第三章 利用葉綠素螢光分析冷季園藝作物耐熱性技術之建立……………….. 17
摘要(Abstract) ………………………………………………………………... 17
一、前言(Introduction)……. ………………………………………………… 19
二、材料與方法(Materials and Methods) …………………………………… 21
試驗一、四種冷季蔬菜葉綠素螢光耐熱生理與評估技術之探討…… 21
試驗二、七種冷季草花葉綠素螢光耐熱生理與評估技術之探討…… 22
三、結果(Result) ………………………………..…………………………… 23
四、討論(Discussion) ……………………………………………………….. 25
五、結論(Conclusion) ……………………………………………………….. 28
第四章 外施化學藥劑對提高非洲鳳仙耐熱性之影響………………………….. 35
摘要(Abstract) ………………………………………………………………... 35
一、前言(Introduction) ……………………………………………………… 36
二、材料與方法(Materials and Methods) …………………………………… 38
試驗一、水楊酸施用濃度對非洲鳳仙幼苗耐熱性之探討…………… 38
試驗二、氯化鈣施用濃度對非洲鳳仙幼苗耐熱性之探討…………… 40
試驗三、甜菜鹼施用濃度對非洲鳳仙幼苗耐熱性之探討…………… 41
試驗四、海藻糖施用濃度對非洲鳳仙幼苗耐熱性之探討…………… 42
三、結果(Result) …………………………………………………………….. 44
四、討論(Discussion) ……………………………………………………….. 49
五、結論(Conclusion) ………………………………………………………….. 54
第五章 外施複合藥劑對非洲鳳仙耐熱性之影響……………………………….. 73
摘要(Abstract) ………………………………………………………………... 73
一、前言(Introduction) ………………………………………………………. 74
二、材料與方法(Materials and Methods) …………………………………… 75
試驗一、單一藥劑與複合藥劑對非洲鳳仙幼苗高溫耐受性之影響… 75
試驗二、不同水楊酸與氯化鈣組合比例對非洲鳳仙幼苗高溫逆境之影響 …………………………………………………………………………… 77
三、結果(Result) ……………………………………………………………… 79
四、討論(Discussion) ………………………………………………………… 82
五、結論(Conclusion) ………………………………………………………… 86
第六章 外施複合藥劑對四季秋海棠於高溫下生長之影響……………………… 97
摘要(Abstract) ………………………………………………………………… 97
一、前言(Introduction) ……………………………………………………........ 98
二、材料與方法(Materials and Methods) ………………………………... …... 99
三、結果(Result) …………………………………………………………….. .103
四、討論(Discussion) ……………………………………………………….... 106
五、結論(Conclusion) ………………………………………………………... 110
第七章 結論………………………………………………………………………... 123
參考文獻(References)…….………………………………………………………….125
附錄(Appendix) ……………………………………………………………………...141
dc.language.isozh-TW
dc.title水楊酸複合藥劑促進非洲鳳仙與四季秋海棠耐熱性之研究zh_TW
dc.titleAlleviation of Heat Stress in Impatiens and Wax Begonia by Combined Chemicals Based on Salicylic Aciden
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅筱鳳(Hsiao-Feng Lo),張祖亮(Tsu-Liang Chang),熊同銓(Tung-Chuan Hsiung)
dc.subject.keyword複合藥劑,高溫逆境,耐熱性,水楊酸,氯化鈣,甜菜鹼,海藻糖,zh_TW
dc.subject.keywordCombined chemicals,Heat stress,Heat tolerance,Salicylic acid,calcium chloride,glycine betaine,trehalose,en
dc.relation.page141
dc.rights.note未授權
dc.date.accepted2013-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved