Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康照洲(Jaw-Jou Kang)
dc.contributor.authorCheng Jhanen
dc.contributor.author詹晟zh_TW
dc.date.accessioned2021-06-08T00:00:56Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citationAbbott, N.J., Dolman, D.M., Drndarski, S., and Fredriksson, S. (2012). An Improved In Vitro Blood–Brain Barrier Model: Rat Brain Endothelial Cells Co-cultured with Astrocytes. In Astrocytes, R. Milner, ed. (Humana Press), pp. 415-430.
Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., Yusof, S.R., and Begley, D.J. (2010). Structure and function of the blood–brain barrier. Neurobiology of Disease 37, 13-25.
Abbott, N.J., Ronnback, L., and Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7, 41-53.
Adams, J. (2004). The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4, 349-360.
Aijaz, S., Balda, M.S., and Matter, K. (2006). Tight Junctions: Molecular Architecture and Function. In International Review of Cytology, W.J. Kwang, ed. (Academic Press), pp. 261-298.
Akiyama, H., Kondoh, T., Kokunai, T., Nagashima, T., Saito, N., and Tamaki, N. (2000). Blood-brain barrier formation of grafted human umbilical vein endothelial cells in athymic mouse brain. Brain Research 858, 172-176.
Alkilany, A., and Murphy, C. (2010). Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? Journal of Nanoparticle Research 12, 2313-2333.
Asahi, M., Wang, X., Mori, T., Sumii, T., Jung, J.-C., Moskowitz, M.A., Fini, M.E., and Lo, E.H. (2001). Effects of Matrix Metalloproteinase-9 Gene Knock-Out on the Proteolysis of Blood-Brain Barrier and White Matter Components after Cerebral Ischemia. The Journal of Neuroscience 21, 7724-7732.
AshaRani, P.V., Low Kah Mun, G., Hande, M.P., and Valiyaveettil, S. (2008). Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano 3, 279-290.
Azzazy, H.M.E., and Mansour, M.M.H. (2009). In vitro diagnostic prospects of nanoparticles. Clinica Chimica Acta 403, 1-8.
Balasubramanian, S.K., Jittiwat, J., Manikandan, J., Ong, C.-N., Yu, L.E., and Ong, W.-Y. (2010). Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31, 2034-2042.
Balbus, J.M., Maynard, A.D., Colvin, V.L., Castranova, V., Daston, G.P., Denison, R.A., Dreher, K.L., Goering, P.L., Goldberg, A.M., Kulinowski, K.M., et al. (2007). Meeting report: hazard assessment for nanoparticles--report from an interdisciplinary workshop. Environmental health perspectives 115, 1654-1659.
Bauer, A.T., Burgers, H.F., Rabie, T., and Marti, H.H. (2010). Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 30, 837-848.
Baughman, R.H., Zakhidov, A.A., and de Heer, W.A. (2002). Carbon Nanotubes--the Route Toward Applications. Science 297, 787-792.
Beese, M., Wyss, K., Haubitz, M., and Kirsch, T. (2010). Effect of cAMP derivates on assembly and maintenance of tight junctions in human umbilical vein endothelial cells. BMC cell biology 11, 68.
Bermudez, E., Mangum, J.B., Wong, B.A., Asgharian, B., Hext, P.M., Warheit, D.B., and Everitt, J.I. (2004). Pulmonary Responses of Mice, Rats, and Hamsters to Subchronic Inhalation of Ultrafine Titanium Dioxide Particles. Toxicological Sciences 77, 347-357.
Bystrzejewska-Piotrowska, G., Golimowski, J., and Urban, P.L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management 29, 2587-2595.
Cecchelli, R., Berezowski, V., Lundquist, S., Culot, M., Renftel, M., Dehouck, M.-P., and Fenart, L. (2007). Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 6, 650-661.
Chen, D., Wei, X.-t., Guan, J.-h., Yuan, J.-w., Peng, Y.-t., Song, L., and Liu, Y.-h. (2012). Inhibition of c-Jun N-terminal kinase prevents blood–brain barrier disruption and normalizes the expression of tight junction proteins clautin-5 and ZO-1 in a rat model of subarachnoid hemorrhage. Acta Neurochir 154, 1469-1476.
Chen, J., Wang, D., Xi, J., Au, L., Siekkinen, A., Warsen, A., Li, Z.-Y., Zhang, H., Xia, Y., and Li, X. (2007). Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells. Nano Letters 7, 1318-1322.
Chen, X., and Macara, I.G. (2005). Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 7, 262-269.
Chithrani, B.D., Ghazani, A.A., and Chan, W.C.W. (2006). Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters 6, 662-668.
Chou, M.M., Hou, W., Johnson, J., Graham, L.K., Lee, M.H., Chen, C.-S., Newton, A.C., Schaffhausen, B.S., and Toker, A. (1998). Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Current Biology 8, 1069-1078.
Chou, S.-W., Shau, Y.-H., Wu, P.-C., Yang, Y.-S., Shieh, D.-B., and Chen, C.-C. (2010). In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging. Journal of the American Chemical Society 132, 13270-13278.
Chung, T.-W., Liu, D.-Z., Wang, S.-Y., and Wang, S.-S. (2003). Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 24, 4655-4661.
Clarke, H., Ginanni, N., Laughlin, K.V., Smith, J.B., Pettit, G.R., and Mullin, J.M. (2000). The Transient Increase of Tight Junction Permeability Induced by Bryostatin 1 Correlates with Rapid Downregulation of Protein Kinase C-α. Experimental Cell Research 261, 239-249.
Conner, S.D., and Schmid, S.L. (2003). Regulated portals of entry into the cell. Nature 422, 37-44.
Cross, S.E., Innes, B., Roberts, M.S., Tsuzuki, T., Robertson, T.A., and McCormick, P. (2007). Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin pharmacology and physiology 20, 148-154.
Cummins, P.M. (2012). Occludin: One Protein, Many Forms. Molecular and Cellular Biology 32, 242-250.
Davis, M.E., Zuckerman, J.E., Choi, C.H.J., Seligson, D., Tolcher, A., Alabi, C.A., Yen, Y., Heidel, J.D., and Ribas, A. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067-1070.
De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips, A.J.A.M., and Geertsma, R.E. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29, 1912-1919.
Dejana, E., Corada, M., and Lampugnani, M.G. (1995). Endothelial cell-to-cell junctions. The FASEB Journal 9, 910-918.
Dejana, E., Orsenigo, F., and Lampugnani, M.G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science 121, 2115-2122.
Deli, M.A. (2009). Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788, 892-910.
Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377-379.
Dingreville, R., Qu, J., and Mohammed, C. (2005). Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids 53, 1827-1854.
Dorfel, M.J., and Huber, O. (2012). Modulation of Tight Junction Structure and Function by Kinases and Phosphatases Targeting Occludin. Journal of Biomedicine and Biotechnology 2012 1-14.
Du, D., Xu, F., Yu, L., Zhang, C., Lu, X., Yuan, H., Huang, Q., Zhang, F., Bao, H., Jia, L., et al. (2010). The Tight Junction Protein, Occludin, Regulates the Directional Migration of Epithelial Cells. Developmental Cell 18, 52-63.
Dunphy Guzman, K.A., Taylor, M.R., and Banfield, J.F. (2006). Environmental Risks of Nanotechnology:  National Nanotechnology Initiative Funding, 2000−2004. Environmental Science & Technology 40, 1401-1407.
Ebnet, K., Suzuki, A., Ohno, S., and Vestweber, D. (2004). Junctional adhesion molecules (JAMs): more molecules with dual functions? Journal of Cell Science 117, 19-29.
Elias, B.C., Suzuki, T., Seth, A., Giorgianni, F., Kale, G., Shen, L., Turner, J.R., Naren, A., Desiderio, D.M., and Rao, R. (2009). Phosphorylation of Tyr-398 and Tyr-402 in Occludin Prevents Its Interaction with ZO-1 and Destabilizes Its Assembly at the Tight Junctions. Journal of Biological Chemistry 284, 1559-1569.
Feng, S., Cen, J., Huang, Y., Shen, H., Yao, L., Wang, Y., and Chen, Z. (2011). Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood-Brain Barrier by Disrupting Tight Junction Proteins. PLoS ONE 6, e20599.
Feynman, R.P. (1992). There's plenty of room at the bottom [data storage]. Journal of Microelectromechanical Systems 1, 60-66.
Findley, M.K., and Koval, M. (2009). Regulation and roles for claudin-family tight junction proteins. IUBMB Life 61, 431-437.
Fontijn, R.D., Rohlena, J., van Marle, J., Pannekoek, H., and Horrevoets, A.J.G. (2006). Limited contribution of claudin-5-dependent tight junction strands to endothelial barrier function. European Journal of Cell Biology 85, 1131-1144.
Garnett, M.C., and Kallinteri, P. (2006). Nanomedicines and nanotoxicology: some physiological principles. Occupational Medicine 56, 307-311.
Gopalakrishnan, S., Hallett, M.A., Atkinson, S.J., and Marrs, J.A. (2007). aPKC-PAR complex dysfunction and tight junction disassembly in renal epithelial cells during ATP depletion. American Journal of Physiology - Cell Physiology 292, C1094-C1102.
Guarino, M. (2010). Src signaling in cancer invasion. Journal of Cellular Physiology 223, 14-26.
Guelte, A., and Gavard, J. (2011). Role of Endothelial Cell–Cell Junctions in Endothelial Permeability. In Permeability Barrier, K. Turksen, ed. (Humana Press), pp. 265-279.
Hawkins, B.T., and Davis, T.P. (2005). The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews 57, 173-185.
Helfrich, I., Schmitz, A., Zigrino, P., Michels, C., Haase, I., Bivic, A.l., Leitges, M., and Niessen, C.M. (2006). Role of aPKC Isoforms and Their Binding Partners Par3 and Par6 in Epidermal Barrier Formation. J Invest Dermatol 127, 782-791.
Higashida, T., Kreipke, C.W., Rafols, J.A., Peng, C., Schafer, S., Schafer, P., Ding, J.Y., Dornbos, D., Li, X., Guthikonda, M., et al. (2011). The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. Journal of Neurosurgery 114, 92-101.
Hirai, T., and Chida, K. (2003). Protein Kinase Cζ (PKCζ): Activation Mechanisms and Cellular Functions. Journal of Biochemistry 133, 1-7.
Honda, M., Nakagawa, S., Hayashi, K., Kitagawa, N., Tsutsumi, K., Nagata, I., and Niwa, M. (2006). Adrenomedullin Improves the Blood–Brain Barrier Function Through the Expression of Claudin-5. Cell Mol Neurobiol 26, 109-118.
Hone, D.C., Walker, P.I., Evans-Gowing, R., FitzGerald, S., Beeby, A., Chambrier, I., Cook, M.J., and Russell, D.A. (2002). Generation of Cytotoxic Singlet Oxygen via Phthalocyanine-Stabilized Gold Nanoparticles:  A Potential Delivery Vehicle for Photodynamic Therapy. Langmuir 18, 2985-2987.
Inoue, K.-i., Takano, H., Koike, E., Yanagisawa, R., Sakurai, M., Tasaka, S., Ishizaka, A., and Shimada, A. (2008). Effects of Pulmonary Exposure to Carbon Nanotubes on Lung and Systemic Inflammation with Coagulatory Disturbance Induced by Lipopolysaccharide in Mice. Experimental Biology and Medicine 233, 1583-1590.
Itoh, M., Sasaki, H., Furuse, M., Ozaki, H., Kita, T., and Tsukita, S. (2001). Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. The Journal of Cell Biology 154, 491-498.
Jaffe, E.A., Nachman, R.L., Becker, C.G., and Minick, C.R. (1973). Culture of Human Endothelial Cells Derived from Umbilical Veins. IDENTIFICATION BY MORPHOLOGIC AND IMMUNOLOGIC CRITERIA. The Journal of Clinical Investigation 52, 2745-2756.
Jain, S., Suzuki, T., Seth, A., Samak, G., and Rao, R. (2011). Protein kinase Cζ phosphorylates occludin and promotes assembly of epithelial tight junctions. Biochemical Journal 437, 289-299.
Joberty, G., Petersen, C., Gao, L., and Macara, I.G. (2000). The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2, 531-539.
Joseloff, E., Cataisson, C., Aamodt, H., Ocheni, H., Blumberg, P., Kraker, A.J., and Yuspa, S.H. (2002). Src Family Kinases Phosphorylate Protein Kinase C δ on Tyrosine Residues and Modify the Neoplastic Phenotype of Skin Keratinocytes. Journal of Biological Chemistry 277, 12318-12323.
Juillerat-Jeanneret, L. (2008). The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discovery Today 13, 1099-1106.
Kale, G., Naren, A.P., Sheth, P., and Rao, R.K. (2003). Tyrosine phosphorylation of occludin attenuates its interactions with ZO-1, ZO-2, and ZO-3. Biochemical and Biophysical Research Communications 302, 324-329.
Kim, J., Park, S., Lee, J.E., Jin, S.M., Lee, J.H., Lee, I.S., Yang, I., Kim, J.-S., Kim, S.K., Cho, M.-H., et al. (2006). Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angewandte Chemie 118, 7918-7922.
Knezevic, I.I., Predescu, S.A., Neamu, R.F., Gorovoy, M.S., Knezevic, N.M., Easington, C., Malik, A.B., and Predescu, D.N. (2009). Tiam1 and Rac1 Are Required for Platelet-activating Factor-induced Endothelial Junctional Disassembly and Increase in Vascular Permeability. Journal of Biological Chemistry 284, 5381-5394.

Koizumi, J.-i., Kojima, T., Ogasawara, N., Kamekura, R., Kurose, M., Go, M., Harimaya, A., Murata, M., Osanai, M., Chiba, H., et al. (2008). Protein Kinase C Enhances Tight Junction Barrier Function of Human Nasal Epithelial Cells in Primary Culture by Transcriptional Regulation. Molecular Pharmacology 74, 432-442.
Kuwabara, H., Kokai, Y., Kojima, T., Takakuwa, R., Mori, M., and Sawada, N. (2001). Occludin Regulates Actin Cytoskeleton in Endothelial Cells. Cell Structure and Function 26, 109-116.
Larsen, S.T., Roursgaard, M., Jensen, K.A., and Nielsen, G.D. (2010). Nano Titanium Dioxide Particles Promote Allergic Sensitization and Lung Inflammation in Mice. Basic & Clinical Pharmacology & Toxicology 106, 114-117.
Li, C.-H., Liao, P.-L., Shyu, M.-K., Liu, C.-W., Kao, C.-C., Huang, S.-H., Cheng, Y.-W., and Kang, J.-J. (2012). Zinc Oxide Nanoparticles–Induced Intercellular Adhesion Molecule 1 Expression Requires Rac1/Cdc42, Mixed Lineage Kinase 3, and c-Jun N-Terminal Kinase Activation in Endothelial Cells. Toxicological Sciences 126, 162-172.
Li, H., Li, F., Wang, L., Sheng, J., Xin, Z., Zhao, L., Xiao, H., Zheng, Y., and Hu, Q. (2009). Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chemistry 114, 547-552.
Li, J.J., Hartono, D., Ong, C.-N., Bay, B.-H., and Yung, L.-Y.L. (2010). Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31, 5996-6003.
Li, N., Xia, T., and Nel, A.E. (2008). The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biology and Medicine 44, 1689-1699.
Li, P., Li, J., Wu, C., Wu, Q., and Li, J. (2005). Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16, 1912-1917.
Lin, D., Edwards, A.S., Fawcett, J.P., Mbamalu, G., Scott, J.D., and Pawson, T. (2000). A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2, 540-547.
Linsebigler, A.L., Lu, G., and Yates, J.T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 95, 735-758.
Lischper, M., Beuck, S., Thanabalasundaram, G., Pieper, C., and Galla, H.-J. (2010). Metalloproteinase mediated occludin cleavage in the cerebral microcapillary endothelium under pathological conditions. Brain Research 1326, 114-127.
Liu, J., Jin, X., Liu, K.J., and Liu, W. (2012). Matrix Metalloproteinase-2-Mediated Occludin Degradation and Caveolin-1-Mediated Claudin-5 Redistribution Contribute to Blood-Brain Barrier Damage in Early Ischemic Stroke Stage. The Journal of Neuroscience 32, 3044-3057.
Lockman, P.R., Mumper, R.J., Khan, M.A., and Allen, D.D. (2002). Nanoparticle Technology for Drug Delivery Across the Blood-Brain Barrier. Drug Development and Industrial Pharmacy 28, 1-13.
Moller, P., Mikkelsen, L., Vesterdal, L.K., Folkmann, J.K., Forchhammer, L., Roursgaard, M., Danielsen, P.H., and Loft, S. (2011). Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Critical Reviews in Toxicology 41, 339-368.
Mandel, I., Paperna, T., Volkowich, A., Merhav, M., Glass-Marmor, L., and Miller, A. (2012). The ubiquitin–proteasome pathway regulates claudin 5 degradation. Journal of Cellular Biochemistry 113, 2415-2423.
McLaughlin, J., Padfield, P.J., Burt, J.P.H., and O'Neill, C.A. (2004). Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms. American Journal of Physiology - Cell Physiology 287, C1412-C1417.
Meetoo, D.D. (2011). Nanotechnology and the food sector: From the farm to the table. Emirates Journal of Food and Agriculture 23, 387-403.
Mellor, H., and Parker, P.J. (1998). The extended protein kinase C superfamily. Biochem J 332, 281-292.

Mertens, A.E.E., Rygiel, T.P., Olivo, C., van der Kammen, R., and Collard, J.G. (2005). The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. The Journal of Cell Biology 170, 1029-1037.
Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607-609.
Mironava, T., Hadjiargyrou, M., Simon, M., Jurukovski, V., and Rafailovich, M.H. (2010). Gold nanoparticles cellular toxicity and recovery: Effect of size, concentration and exposure time. Nanotoxicology 4, 120-137.
Morita, K., Furuse, M., Fujimoto, K., and Tsukita, S. (1999). Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proceedings of the National Academy of Sciences of the United States of America 96, 511-516.
Mullin, J.M., Laughlin, K.V., Ginanni, N., Marano, C.W., Clarke, H.M., and Peralta Soler, A. (2000). Increased Tight Junction Permeability Can Result from Protein Kinase C Activation/Translocation and Act as a Tumor Promotional Event in Epithelial Cancers. Annals of the New York Academy of Sciences 915, 231-236.
Murakami, T., Felinski, E.A., and Antonetti, D.A. (2009). Occludin Phosphorylation and Ubiquitination Regulate Tight Junction Trafficking and Vascular Endothelial Growth Factor-induced Permeability. Journal of Biological Chemistry 284, 21036-21046.
Najafov, A., Sommer, E.M., Axten, J.M., Deyoung, M.P., and Alessi, D.R. (2010). Characterization of GSK2334470, a novel and highly specific inhibitor of PDK1. Biochemical Journal 433, 357-369.
Newman, M.D., Stotland, M., and Ellis, J.I. (2009). The safety of nanosized particles in titanium dioxide– and zinc oxide–based sunscreens. Journal of the American Academy of Dermatology 61, 685-692.

Nishimura, T., Yamaguchi, T., Kato, K., Yoshizawa, M., Nabeshima, Y.-i., Ohno, S., Hoshino, M., and Kaibuchi, K. (2005). PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 7, 270-277.
Nitta, T., Hata, M., Gotoh, S., Seo, Y., Sasaki, H., Hashimoto, N., Furuse, M., and Tsukita, S. (2003). Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. The Journal of Cell Biology 161, 653-660.
Oberdorster, G. (2010). Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. Journal of Internal Medicine 267, 89-105.
Oberdorster, G., Oberdorster, E., and Oberdorster, J. (2005). Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives 113, 823-839.
Ohno, S. (2001). Intercellular junctions and cellular polarity: the PAR–aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Current Opinion in Cell Biology 13, 641-648.
Osmond, M.J., and Mccall, M.J. (2010). Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology 4, 15-41.
Pardridge, W.M. (2002). Drug and gene targeting to the brain with molecular trojan horses. Nat Rev Drug Discov 1, 131-139.
Rai, M., Yadav, A., and Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27, 76-83.
Rao, R. (2009). Occludin Phosphorylation in Regulation of Epithelial Tight Junctions. Annals of the New York Academy of Sciences 1165, 62-68.
Reeves, J.F., Davies, S.J., Dodd, N.J.F., and Jha, A.N. (2008). Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 640, 113-122.
Rosse, C., Linch, M., Kermorgant, S., Cameron, A.J.M., Boeckeler, K., and Parker, P.J. (2010). PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11, 103-112.
Rosson, D., O’Brien, T.G., Kampherstein, J.A., Szallasi, Z., Bogi, K., Blumberg, P.M., and Mullin, J.M. (1997). Protein Kinase C-α Activity Modulates Transepithelial Permeability and Cell Junctions in the LLC-PK1 Epithelial Cell Line. Journal of Biological Chemistry 272, 14950-14953.
Rubin, L.L., and Staddon, J.M. (1999). THE CELL BIOLOGY OF THE BLOOD-BRAIN BARRIER. Annual Review of Neuroscience 22, 11-28.
Saitou, M., Furuse, M., Sasaki, H., Schulzke, J.-D., Fromm, M., Takano, H., Noda, T., and Tsukita, S. (2000). Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands. Molecular Biology of the Cell 11, 4131-4142.
Sandhu, A. (2006). Who invented nano? Nat Nano 1, 87-87.
Sandoval, K.E., and Witt, K.A. (2008). Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiology of Disease 32, 200-219.
Sayes, C.M., Wahi, R., Kurian, P.A., Liu, Y., West, J.L., Ausman, K.D., Warheit, D.B., and Colvin, V.L. (2006). Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicity and Inflammatory Response Study with Human Dermal Fibroblasts and Human Lung Epithelial Cells. Toxicological Sciences 92, 174-185.
Scheringer, M. (2008). Nanoecotoxicology: Environmental risks of nanomaterials. Nat Nano 3, 322-323.
Seery, M.K., George, R., Floris, P., and Pillai, S.C. (2007). Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 189, 258-263.
Shukla, R.K., Sharma, V., Pandey, A.K., Singh, S., Sultana, S., and Dhawan, A. (2011). ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicology in Vitro 25, 231-241.
Shvedova, A., Castranova, V., Kisin, E., Schwegler-Berry, D., Murray, A., Gandelsman, V., Maynard, A., and Baron, P. (2003). Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells. Journal of Toxicology and Environmental Health, Part A 66, 1909-1926.
Soenen, S.J., Manshian, B., Montenegro, J.M., Amin, F., Meermann, B., Thiron, T., Cornelissen, M., Vanhaecke, F., Doak, S., Parak, W.J., et al. (2012). Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano 6, 5767-5783.
Soma, T., Chiba, H., Kato-Mori, Y., Wada, T., Yamashita, T., Kojima, T., and Sawada, N. (2004). Thr207 of claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP. Experimental Cell Research 300, 202-212.
Sonavane, G., Tomoda, K., and Makino, K. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids and Surfaces B: Biointerfaces 66, 274-280.
Stuart, R.O., and Nigam, S.K. (1995). Regulated assembly of tight junctions by protein kinase C. Proceedings of the National Academy of Sciences 92, 6072-6076.
Sundstrom, J.M., Tash, B.R., Murakami, T., Flanagan, J.M., Bewley, M.C., Stanley, B.A., Gonsar, K.B., and Antonetti, D.A. (2009). Identification and Analysis of Occludin Phosphosites: A Combined Mass Spectrometry and Bioinformatics Approach. Journal of Proteome Research 8, 808-817.
Suzuki, A., Yamanaka, T., Hirose, T., Manabe, N., Mizuno, K., Shimizu, M., Akimoto, K., Izumi, Y., Ohnishi, T., and Ohno, S. (2001). Atypical Protein Kinase C Is Involved in the Evolutionarily Conserved Par Protein Complex and Plays a Critical Role in Establishing Epithelia-Specific Junctional Structures. The Journal of Cell Biology 152, 1183-1196.
Taddei, A., Giampietro, C., Conti, A., Orsenigo, F., Breviario, F., Pirazzoli, V., Potente, M., Daly, C., Dimmeler, S., and Dejana, E. (2008). Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10, 923-934.
Takata, F., Dohgu, S., Yamauchi, A., Matsumoto, J., Machida, T., Fujishita, K., Shibata, K., Shinozaki, Y., Sato, K., Kataoka, Y., et al. (2013). In Vitro Blood-Brain Barrier Models Using Brain Capillary Endothelial Cells Isolated from Neonatal and Adult Rats Retain Age-Related Barrier Properties. PLoS ONE 8, e55166.

Tedesco, S., Doyle, H., Blasco, J., Redmond, G., and Sheehan, D. (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology 100, 178-186.
Thostenson, E.T., Ren, Z., and Chou, T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology 61, 1899-1912.
Tiwari, P., Vig, K., Dennis, V., and Singh, S. (2011). Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 1, 31-63.
Traweger, A., Fang, D., Liu, Y.-C., Stelzhammer, W., Krizbai, I.A., Fresser, F., Bauer, H.-C., and Bauer, H. (2002). The Tight Junction-specific Protein Occludin Is a Functional Target of the E3 Ubiquitin-protein Ligase Itch. Journal of Biological Chemistry 277, 10201-10208.
Tsuji, J.S., Maynard, A.D., Howard, P.C., James, J.T., Lam, C.-w., Warheit, D.B., and Santamaria, A.B. (2006). Research Strategies for Safety Evaluation of Nanomaterials, Part IV: Risk Assessment of Nanoparticles. Toxicological Sciences 89, 42-50.
Vermeer, P.D., Denker, J., Estin, M., Moninger, T.O., Keshavjee, S., Karp, P., Kline, J.N., and Zabner, J. (2009). MMP9 modulates tight junction integrity and cell viability in human airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology 296, L751-L762.
Vigderman, L., and Zubarev, E.R. (2012). Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Advanced Drug Delivery Reviews.
Wang, J., Sun, W., Zhang, Z., Zhang, X., Li, R., Ma, T., Zhang, P., and Li, Y. (2007). Sonocatalytic degradation of methyl parathion in the presence of micron-sized and nano-sized rutile titanium dioxide catalysts and comparison of their sonocatalytic abilities. Journal of Molecular Catalysis A: Chemical 272, 84-90.
Wang, P., Liu, Y., Shang, X., and Xue, Y. (2011). CRM197-Induced Blood–Brain Barrier Permeability Increase is Mediated by Upregulation of Caveolin-1 Protein. J Mol Neurosci 43, 485-492.
Weksler, B., Romero, I., and Couraud, P.-O. (2013). The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids and Barriers of the CNS 10, 16.
Wohlfart, S., Gelperina, S., and Kreuter, J. (2012). Transport of drugs across the blood–brain barrier by nanoparticles. Journal of Controlled Release 161, 264-273.
Wolburg, H., and Lippoldt, A. (2002). Tight junctions of the blood–brain barrier: development, composition and regulation. Vascular Pharmacology 38, 323-337.
Yah, C.S., Iyuke, S.E., and Simate, G.S. (2011). A Review of Nanoparticles Toxicity and Their Routes of Exposures. Iranian Journal of Pharmaceutical Sciences 8, 299-314.
Yang, Y., Estrada, E.Y., Thompson, J.F., Liu, W., and Rosenberg, G.A. (2006). Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27, 697-709.
Yang, Y., and Rosenberg, G. (2011). MMP-Mediated Disruption of Claudin-5 in the Blood–Brain Barrier of Rat Brain After Cerebral Ischemia. In Claudins, K. Turksen, ed. (Humana Press), pp. 333-345.
Yang, Y., Thompson, J.F., Taheri, S., Salayandia, V.M., McAvoy, T.A., Hill, J.W., Yang, Y., Estrada, E.Y., and Rosenberg, G.A. (2013). Early inhibition of MMP activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery. J Cereb Blood Flow Metab.
Yeon, J., Na, D., Choi, K., Ryu, S.-W., Choi, C., and Park, J.-K. (2012). Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices 14, 1141-1148.
Yeung, D., Manias, J., Stewart, D., and Nag, S. (2008). Decreased junctional adhesion molecule-A expression during blood–brain barrier breakdown. Acta Neuropathol 115, 635-642.
Yi, P., Feng, Q., Amazit, L., Lonard, D.M., Tsai, S.Y., Tsai, M.-J., and O'Malley, B.W. (2008). Atypical Protein Kinase C Regulates Dual Pathways for Degradation of the Oncogenic Coactivator SRC-3/AIB1. Molecular Cell 29, 465-476.
Zlokovic, B.V. (2008). The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron 57, 178-201.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17205-
dc.description.abstract奈米物質在人體內的作用情形與一般物質具有相當大的差異,當物質奈米化後,其大小、表面積、活性及物化特性會隨之改變,在人體內的吸收、分佈及毒性也會發生改變,因此對人類的健康和生態環境產生許多潛在的風險。奈米粒子通常小於100 nm,更容易被人體吸收,並且較容易穿透血管壁直接進入人體血液循環,甚至能穿透胃腸道上皮或血腦障壁 (blood-brain barrier, BBB) 造成更嚴重的傷害。
我們的研究主要是為了解奈米物質是否會造成血腦障壁對物質的通透性增加,並且探討其機制。我們利用人類臍靜脈內皮細胞 (human umbilical vein endothelial cells, HUVECs) 當作細胞實驗模式,並暴露於氧化鋅、銀及金三種金屬之非奈米及奈米粒子。首先,利用了細胞通透性試驗 (in vitro cell permeability assay) 觀察內皮細胞通透能力的影響,發現在奈米金的處理下,細胞對於大分子物質的通透性有顯著的增加,然而非奈米及其他奈米粒子皆無明顯之變化。此外,也利用小鼠實驗模式觀察奈米物質在活體中對血腦障壁通透性的影響,結果證明當尾靜脈注射奈米金後,確實造成腦部微血管血管壁的通透性增加,顯示奈米金確實會造成血腦障壁的通透。接著,進行細胞內機轉之探討,我們發現細胞中之緊密連接蛋白 (tight junctions, TJs) 會隨著處理劑量與時間的增加有著減少的趨勢;並且利用細胞免疫螢光染色法 (immunofluorescence analysis) 觀察也可發現細胞TJs的結構較不完整;因此細胞通透性的上升與細胞連接減少所導致的間隙增加有著密切的相關性。另外,我們便探討TJs表現量下降之機轉,當利用26S proteasome之抑制劑MG132抑制其活性,且同時處理了奈米金後發現TJs並沒有減少的現象,因此奈米金所引發的TJs減少是經由26S proteasome所降解的。然而,在TJs之訊息傳遞調控上,當處理了PKCζ之抑制劑Go6983後,TJs表現量有下降的趨勢,因此PKCζ對於TJs的調控扮演了重要角色;而當處理了奈米金之下,PKCζ的磷酸化有減少之趨勢,顯示PKCζ的活性降低,因此得知奈米金所引發的TJs減少是經由PKCζ作為中間之訊息傳遞。
綜合以上實驗結果,我們證實了奈米金會引發血腦障壁的通透性增加,並且是經由調控PKCζ的磷酸化而導致活性上之改變而影響TJs的穩定性,較容易被降解,並且是經由26S proteasome之途徑,最後導致內皮細胞間之連接減少促使細胞對於物質的通透性增加。
zh_TW
dc.description.abstractNanoparticles have smaller size and different physical-chemical characteristics, so the absorption, distribution and toxicity may differ from its bulk material in the human body. Therefore, nanoparticles may cause health risks which are different from those of similar materials in micro or macro form. The blood-brain barrier (BBB) formed by endothelial cells is lining the cerebral microvessels, and has impermeability structure that regulates molecular traffic.
Since nanoparticles are so small that possibly cross the BBB or destroy the impermeability structure, in this study, we investigated whether three commonly used metal particles including gold, silver and zinc oxide could disrupt BBB and increase permeability. Human umbilical vein endothelial cells (HUVECs) were treated with gold, silver, zinc oxide non-nanoparticles and nanoparticles. Cells permeability was increased when treated with gold nanoparticles by in vitro cell permeability assay, while silver and zinc oxide nanoparticles did not. Furthermore, we used in vivo BBB permeability assay and found that injection of gold nanoparticles into mice through tail intravenous injection, had more permeability compare with non-nanoparticles in the brain, indicating the BBB disruption. We found that gold nanoparticles reduce tight junctions (TJs) protein expression such as occludin, claudin-5 and JAM-1, but had no effect on adherens junctions (AJs) protein such as VE-cadherin. Moreover, the structures of TJs had no integrity after treatment with gold nanoparticle by immunofluorescence analysis. TJs protein expression didn’t decrease after pretreatment with 26S proteasome inhibitor, so gold nanoparticle-induced TJs degradation were thought 26S proteasome pathway. Further, we focused on the TJs regulation signaling, the TJs protein expression were decrease after pretreatment with PKCζ inhibitor, indicated that PKCζ was positive correlation with TJs. We indicated that phosphorylation level of PKCζ were down-regulation when treatment of gold nanoparticles, Therefore, gold nanoparticles could down-regulated the activity of PKCζ, and that resulted in TJs instability.
Our results showed that gold nanoparticles could cause BBB permeability increase via protein level regulation of TJs. The gold nanoparticles induced TJs protein decrease through regulation level of phosphorylation of PKCζ, and the low level of phosphorylated PKCζ affected the TJs stability, caused TJs degradation via 26S proteasome. Finally, the endothelial cells junctions decrease brought cell permeability increase.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:00:56Z (GMT). No. of bitstreams: 1
ntu-102-R00447007-1.pdf: 3217678 bytes, checksum: c81864f7c5b044f9d9cdbb714ba8f4b0 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
圖表目錄 v
中文摘要 vi
英文摘要 viii
縮寫表 x
第一章 緒論 (Introduction) 1
1.1 奈米科技 (Nanotechnology) 2
1.2 奈米毒理學 (Nanotoxicology) 5
1.3 奈米粒子 (Nanoparticles, NPs) 7
1.4 血腦障壁 (Blood-brain barrier, BBB) 9
1.5 連接蛋白 (Cell junctions) 11
1.6 研究動機 14
第二章 材料與方法 (Materials and Methods) 15
2.1 材料 16
2.1.1 細胞與動物 16
2.1.2 藥品與試劑 16
2.1.3 抗體與酵素 18
2.1.4 儀器 18
2.2 方法 19
2.2.1 穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 19
2.2.2 人類臍靜脈內皮細胞 (HUVECs) 分離及培養 19
2.2.3 細胞存活率試驗 (Cell viability assay) 20
2.2.4 細胞通透性試驗 (In vitro cell permeability assay) 21
2.2.5 活體血腦障壁通透性試驗 (In vivo BBB permeability assay) 21
2.2.6 西方墨點法 (Western blotting analysis) 21
2.2.7 細胞免疫螢光染色法 (Immunofluorescence analysis) 22
2.2.8 反轉錄聚合酶鏈鎖反應 (RT-PCR) 23
2.2.9 統計分析 24
第三章 結果 (Results) 25
3.1 非奈米及奈米粒子粒徑大小分析 26
3.2 非奈米及奈米粒子對人類臍靜脈內皮細胞之細胞存活率 26
3.3 奈米金增加人類臍靜脈內皮細胞之細胞障壁對物質的通透性 28
3.4 奈米金增加血腦障壁對物質的通透性 29
3.5 奈米金對於細胞AJs之表現沒有影響 29
3.6 奈米金降低細胞TJs之表現 30
3.7 奈米金破壞細胞TJs結構的完整性 31
3.8 奈米金無法降低細胞TJs mRNA之表現 32
3.9 奈米金引發細胞TJs的降解是經26S proteasome之途徑 32
3.10 奈米金降低細胞TJs的表現是經由調控PKCζ之活性 33
第四章 討論 (Discussion) 35
4.1 奈米粒子引起之細胞毒性 36
4.2 奈米金引發血腦障壁通透之機制 37
4.3 奈米金引發細胞TJs表現減少之機制 39
4.4 奈米金之藥理及毒理學 43
第五章 結論 (Conclusion) 45
參考文獻 (References) 47
圖表 (Figures and Tables) 64
dc.language.isozh-TW
dc.title奈米金引發血腦障壁通透之機制探討zh_TW
dc.titleStudies on the Mechanisms of Gold Nanoparticle-Induced Blood-Brain Barrier Permeabilityen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭幼文(Yu-Wen Cheng),劉俊仁(Jun-Jen Liu)
dc.subject.keyword奈米物質,奈米金,血腦障壁,通透性,緊密連接蛋白,zh_TW
dc.subject.keywordgold nanoparticles,blood-brain barrier,permeability,tight junctions,occludin,JAM-1,claudin-5,en
dc.relation.page89
dc.rights.note未授權
dc.date.accepted2013-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved