Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于靖(Jing Yu)
dc.contributor.authorHao-Wei Chuen
dc.contributor.author朱浩瑋zh_TW
dc.date.accessioned2021-06-08T00:00:15Z-
dc.date.copyright2013-09-02
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation[1] Cartan, H., Eilenberg, S., Homological Algebra, Princeton Math. Ser., no. 19.
[2] Demazure, M., Gabriel, P., Groupes Alg ebriques, Masson & Cie, 1991.
[3] Di Bartolo, A., Falcone, G., Plaumann, P. and Strambach K., Algebraic Groups and Lie
Groups with Few Factors, Lecture Notes in Mathematics, Vol. 1944, Springer, 2008.
[4] Fauntleroy, A., De ning Normal Subgroups of Unipotent Algebraic Groups, Proceedings
of the American Mathematical Society, Vol. 50, No. 1, pp. 14-20, 1976.
[5] Gong, M. P., Classi cation of Nilpotent Lie Algebras of Dimension 7 (over Algebraically
Closed Field and R), PhD thesis, University of Waterloo, Waterloo, Canada, 1998.
[6] Jacobson, N., Basic Algebra II, second edition, Dover Publications, 2009.
[7] Jacobson, N., Lie Algebras, Interscience Publishers, 1962.
[8] Kambayashi, T., Miyanishi, M. and Takeuchi, M., Unipotent Algebraic Groups, Lecture
Notes in Mathematics, Vol. 414, Springer-Verlag, 1974.
[9] Rosenlicht, M., Some Basic Theorems on Algebraic Group, Amer. J. Math. LXXVIII,
2 pp. 401-443, 1956.
[10] Serre, J-P., Algebraic Groups and Class Fields, Springer-Verlag, 1988.
[11] Springer, T.A., Linear Algebraic Groups, Birkh�auser, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17190-
dc.description.abstract一個代數群如果和一個對角線值均為一的上三角矩陣群的子群同構,則該代數群被稱做冪一代數群。了解冪一代數群的分類結構是一個重要的課題,因為如果了解冪一代數群與約化群的分類足以使我們研究任意的線性代數群。然而冪一代數群的分類是至今仍未解決的。
  在本論文中,我們將探究目前所知的冪一代數群分類理論。我們將廣泛地使用各種子群間的中心群擴張與非中心群擴張理論,並且在代數群是定義在特徵值為0的體上時,探討其相應的李代數。藉由這些工具,我們可以給出關於冪一代數群在等胚變換之內的分類結果,而我們的結論主要可應用於二維與三維的情形。
zh_TW
dc.description.abstractAn algebraic group is said to be unipotent if it is isomorphic a subgroup of triangular matrix having only 1’s on the principal diagonal. Understanding the classification of unipotent groups has been an interesting topic, since such understanding as well as the understanding of the structure of reductive groups would be sufficient to study an arbitrary linear algebraic group. However the problem is so far unsolved.
In this thesis, we will give a survey on the classification on unipotent algebraic groups. We extensively analyze central and non-central extensions on various subgroups, and Lie algebras of groups on fields of characteristic 0 are also considered. Using these tools, we will give results on the classification of unipotent algebraic groups up to isogeny, mainly on dimension 2 and 3.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:00:15Z (GMT). No. of bitstreams: 1
ntu-102-R00221026-1.pdf: 481961 bytes, checksum: b237dc22cc82d042f0f5b7f9a7374998 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
第一章 Introduction 1
第二章 Unipotent Algebraic Groups of Dimension 2 1
2.1 Group Extensions 1
2.2 Unipotent Groups of Dimension 2 4
第三章 Unipotent Algebraic Groups of Dimension 3 7
3.1 The Case when k is of characteristic 0 7
3.2 The Case when G is commutative 8
3.3 The Case when G is non-commutative 9
3.3.1 dim G(1) = 1 15
3.3.3 dim G(1) = 2 17
參考文獻 20
dc.language.isoen
dc.title關於冪一代數群分類的探討zh_TW
dc.titleOn Classification of Unipotent Algebraic Groupsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余家富(Chia-Fu Yu),夏良忠(Liang-Chung Hsia),張介玉(Chieh-Yu Chang)
dc.subject.keyword冪一代數群,群擴張,因子系統,橫斷面,Witt群,zh_TW
dc.subject.keywordUnipotent algebraic group,group extensions,factor system,cross section,Witt groups,en
dc.relation.page21
dc.rights.note未授權
dc.date.accepted2013-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
470.67 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved