Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17160
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志誠
dc.contributor.authorWen-Shian Tsaien
dc.contributor.author蔡文賢zh_TW
dc.date.accessioned2021-06-07T23:58:59Z-
dc.date.copyright2013-08-29
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation王景儀。2010。運用GSM技術之田間斜紋夜蛾監測系統設計與實現。碩士論文。臺北:臺灣大學生物產業機電工程學系暨研究所。
方煒。2006。田間伺服器與無線感測網路的國內外發展。作物、環境與生物資訊。3: 76-93。
林鼎翔,登革熱病媒蚊生態分佈與調查防治,行政院衞生署疾病管制局研究檢驗中心, 2007年。網址:
http://www.epa.gov.tw/FileDownload/FileHandler.ashx?FLID=1721
2013-05-31。
林辰膺、江昭皚、陳家榜、曾主平、吳宗修、楊恩誠、劉錕、曾傳蘆、林冠璋、廖誌聖、司仕豪。2007。應用於東方果實蠅生態監測之MSP430田間閘道器實作。出自〝2007年生機與農機論文發表會論文集〞。臺北:中華農業機械學會。
林冠璋。2007。使用無線感測器網路之自動化害蟲生態監測系統研製。碩士論文。臺北:臺北科技大學機電整合研究所。
行政院衞生署疾病管制局,登革熱防治工作指引,2010年3月。網址:http://studaff.ccu.edu.tw/document/health_2010_05_10_090856_1295802001.pdf。 上網日期:2013-05-31。
行政院衞生署疾病管制局,登革熱防治醫師訓練教材,2006年10月。網址:
http://dengue.nat.gov.tw/public/Data/141315151671.pdf。上網日期:2013-05-31。
李淑妹。2013。高雄地區各里滅蚊志工對於登革熱防治知識、態度與行為之研究。碩士論文。高雄:義守大學管理學院管理碩士在職專班。
洪維恩。2011。MATLAB 7 程式設計。初版。1-3。臺北:旗標。
高堂熙。2012。滅蚊志工環境素養對登革熱病媒防治效果之影響研究。碩士論文。高雄:國立中山大學政治學研究所。
陳弘道。2008。台灣南部地區登革熱擴散地圖及環境影響因子分析。碩士論文。高雄:國立高雄師範大學地理學系暨研究所。
張雄偉、陳亮、徐光輝。2004。DSP 晶片的原理與應用。初版。2-17。臺北:五南圖書。
登革熱-臺灣南部的防疫重點,臺南市衞生局疾病管制課。2003。網址:http://www2.kuas.edu.tw/edu/faa7/result_92/a4/08.pdf。上網日期:2013-05-31。
歐陽太閒、楊恩誠、江昭皚、林達德。2011。光學式蚊子振翅訊號辨識系統之研究。出自〝2011年生機與農機論文發表會論文集〞。臺北:中華農業機械學會。
萬木楊。2012。大話處理器:了解DSP、CPU及MCU基礎架構。初版。81-197。臺北:佳魁資訊。
盧續承。2011。植基於無線感測器網路技術之都市空氣品質監測系統開發。碩士論文。臺北:臺灣大學生物產業機電工程學系暨研究所。
賴子雲。2010。無線感測器網路應用於微型尺度之空氣品質監測網開發。碩士論文。臺北:臺灣大學生物產業機電工程學系暨研究所。
賴達緯。2011。應用LabVIEW於外來果實蠅即時通報系統之設計與實現。碩士論文。臺北:臺灣大學生物產業機電工程學系暨研究所。
劉俊逸。2012。應用於野生動物之自動化影像追蹤系統設計與實現。碩士論文。臺北:臺灣大學生物產業機電工程學系暨研究所。
羅華強。2011。類神經網路─MATLAB的應用。三版。4-5。新北市:高立圖書。
Albert B. S. 1952. Research on dengue during world war II. American Journal of Tropical Medicine. 1: 30-50.
Atal, B. S. 1974. Effectiveness of Linear Predication Characteristics of the Speech Wave for Automatic Speaker Identification and Verification. J. Acoust. Soc. Am, 55(6): 1304-1312.
Bartista, E.A. P. A., H. Yuan, E. Keogh, and A. Mafra-Neto. 2011. Towards Automatic Classification on Flying Insects using Inexpensive Sensors. IEEE International Conference on Machine Learning and Application. 1: 364-369.
Belton, P. and R. A. Costello. 1979. Flight sounds of the females of some mosquitoes of Western Canada. Entomologia Experimentalis et Applicata. 26(1): 105-114.
Cator, L. J., B. J. Arthur, L. C. Harrington, and R. R. Hoy. 2009. Harmonic convergence in the love songs of the dengue vector mosquito. Science. 323(5917): 1077-1079.
Centers for Disease Control(CDC). 2006. Public Health Image Library (PHIL). Available at: http://www.cdc.gov . Accessed 11 June 2013.
Dawson, C. W. and R, Wilby. 1988. An artificial neural network approach to rainfall-runoff modelling, Hydrological Science. 43(1): 47-66.
Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm. Statist. Soc. Ser. B Metho. 39(1): 1-38.
Gauvain, J. L., and C. H. Lee. 1994. Maximum a Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains. IEEE Trans. Speech Audio Proc. 2(2): 291-298.
Gibson, G. and I. Russell. 2006. Flying in Tune: Sexual Recognition in Mosquitoes. Curr. Biol. 16(13): 1311-1316.
Gish, H., and M. Schmidt. 1994. Text-independent Speaker Identification. IEEE Signal Process Mag. 11(4): 18-32.
Gopfert, M. C. and D. Robert. 2001. Active auditory mechanics in mosquitoes. Proc Biol Sci. 268(1465): 333-339.
Gubler, D. J. 1998. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comparative Immunology, Microbiology & Infectious Diseases. 27(5): 319-330.
Gubler, D. J. 2004. Dengue and Dengue Hemorrhagic Fever. Clinical Microbiology Reviews. 11(3): 480-496.
Hardie, J. and G.Powell. 2002. Video analysis of aphid flight behavior. Computers and Electronics in Agriculture. 35(2): 229-242.
Halstead, S. B. 2008. Dengue Virus–Mosquito Interactions. Annual Review of Entomology. 53: 273-291.
Ikawa, T., H. Okabe, T. Mori, K. Urabe, and T. Ikeshoji. 1994. A Method for Reconstructing Three-Dimensional Positions of Swarming Mosquitoes. Journal of Insect Behavior. 7(2): 237-248.
Jackson, J. C. and D. Robert. 2006. Nonlinear auditory mechanism enhances female sounds for male mosquitoes. Proc. Natl. Acad. Sci. 103(45): 16734-16739.
Kyle, J. L. and E. Harris. 2008. Global spread and persistence of dengue. Annual Review of Microbiology. 62: 71-92.
Kinnunen, T., E. Karpov, and P. Franti. 2006. Real-Time Speaker Identification and Verification. IEEE Trans. Audio Speech Lan. P. 14(1): 277-287.
Lenhart, A. E., M. Walle, H. Cedillo, and A. Kroeger. 2005. Building a better ovitrap for detecting Aedes aegypti oviposition. Acta Tropica. 96(1): 56-59.
Li, Z. Y., Z. J. Zhou, Z. R. Shen, and Q. Yao.2005. Automated identification of mosquito (Diptera: Culicidae) wingbeat frequencies by artificial neural network. Artificial Intelligence Application and Innovations. 187: 483-489.
Mankin, R. W. 1994. Acoustical detection of Aedes taeniorhynchus swarms and emergence exoduses in remote salt marshes J. Am. Mosquito Contr. 10(2): 302-208.
Moore, A. 1991. Artificial neural network trained to identify mosquitoes in flight. J. Insect Behav. 4(3): 391-396.
Moore, A. and R. H. Miller. 2002. Automated identification of optically sensed Aphid (Homoptera: Aphidae) wingbeat waveforms. Ann. Entomol. Soc. Am. 95(1): 1-8.
Moore, A., J. R. Miller, B. E. Tabashnik, and S. H. Gage. 1986. Automated identification of flying insects by analysis of wingbeat frequencies. J. Econ. Entomol. 79(6): 1703-1706.
Oertli, J. J. 1989. Relationship of wing beat frequency and temperature during take-off flight in temperate-zone beetles. J. Exp. Biol. 145: 321-338.
Pennetier, C., B. Warren, K. R. Dabire, I. J. Russell, and G.Gibson. 2009. “Singing on the Wing” as a Mechanism for Species Recognition in the Malarial Mosquito Anopheles gambiae. Curr. Biol. 20: 131–136.
Polson, K., C. Curtis, C. M. Seng, J. G. Olson, N. Chantha, and S. C. Rawlins. 2002. The use of ovitraps baited with hay infusion as a surveillance tool for Aedes aegypti mosquitoes in Cambodia. Dengue Bulletin. 26: 178-184.
Reynolds, A. 1995. Speaker identification and verification using Gaussian mixture speaker models. Speech Communication. 17(1): 91-108.
Reynolds, D. R., and J. R. Riley. 2002. Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Computer and Electronics in Agriculture. 35(2): 271-307.
Riley, J. R. 1989. Remote Sensing in Entomology. Ann. Rev. Entomol. 34: 247-271.
Robert, D. 2009. Insect bioacoustics: mosquitoes make an effort to listen to each other. Current Biology. 19(11): 446-449.
Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning representation by back-propagation errors. Nature. 323(9): 533-536.
Scott T. W., A. Naksathit., J. F. Day., J. D. Edman. 1997. A fitness advantage for Aedes aegypti and the viruses it transmits when females feed only on human blood. American Journal of Tropical Medicine & Hygiene. 57: 235-239.
Texas Instruments. 2007a. eZdspTMF28335 Technical Reference. Available at:
http://c2000.spectrumdigital.com/ezf28335/docs/ezdspf28335c_techref.pdf. Accessed 31 May 2013.
Texas Instruments. 2007b. TMS320x2833x Analog-to-Digital Converter (ADC) Module. Available at:
http://www.ti.com.cn/cn/lit/ug/spru812a/spru812a.pdf. Accessed 31 May 2013.
Texas Instruments. 2007c. TMS320F28335/F28334/F28332/F28235/F28234/F28232 Digital Signal Controllers (DSCs). Available at:
http://www.ti.com/lit/ds/symlink/tms320f28335.pdf. Accessed 31 May 2013.
Texas Instruments. 2011. Getting Started with the MSP430 LaunchPad. Available at: http://www.csit-sun.pub.ro/courses/cn1CA/EZ430_LaunchPAD/LaunchPad.pdf. Accessed 31 May 2013.
Unwin, D. M. and C. P. Ellington. 1979. An optical tachometer for measurement of the wing-beat frequency of free-flying insects. J. Exp. Biol. 82: 377-378.
Zeichner, B. C. and M. J. Perich. 1999. Laboratory testing of a lethal ovitrap for Aedes aegypti. Medical and Veterinary Entomology. 13(3): 234-238.
Zadeh, L. A. 1965. Fuzzy sets. Information and Control. 8(3): 338-353.
Zadeh, L. A. 1975. The concept of a linguistic variable and its application to approximate reasoning ─ I. Information Sciences. 8(3): 199-249.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17160-
dc.description.abstract登革熱為一種長期存在於臺灣的傳染性疾病,在臺灣主要的傳播媒介為埃及斑蚊與白線斑蚊。受到登革熱感染的人體,臨床症狀有發燒、身體疼痛等情形,嚴重者將導致呼吸衰竭甚至休克死亡。目前,尚無完善之疫苗可有效抑制登革熱病毒傳播。
因此,在登革熱疫情控制方面,衛生單位主要工作重點皆以病媒蚊密度監控為主,藉由登革熱病媒蚊分布情形,實施預先防治工作。近年來,在臺灣針對登革熱病媒蚊密度監控多以人力方式進行,由於傳染病防治重視時效性,此種人力監測方式將無法針對登革熱疫情爆發前做出迅速的反應,使得現今病媒蚊密度監測工作未具有即時防治與通報之能力。
隨著感測器技術與資通訊技術的蓬勃發展,探討野生生物之自動化系統在生態環境監控上已有許多應用。本研究利用數位信號處理器為核心,結合紅外線感測器應用電路於蚊類振翅頻率偵測,並以全球行動通訊系統(Global System for Mobile Communications)模組作為感測資料的無線傳輸媒介,藉以發展一套自動化登革熱病媒蚊偵測系統。
本研究以MATLAB軟體進行埃及斑蚊與白線斑蚊之辨識演算法開發,藉由快速傅立葉轉換(Fast Fourier Transform, FFT)技術將蚊類振翅信號由時域轉換至頻域進行分析,並導入適應性網路模糊推論系統理論(Adaptive-network-based Fuzzy Inference System, ANFIS),對登革熱病媒蚊辨識分類研究。本研究提出之偵測系統可有效地對於病媒蚊進行偵測,並對病媒蚊振翅信號進行分析,而實驗結果亦顯示,利用ANFIS之機器學習演算法,對於病媒蚊種類辨識具有良好之結果。
zh_TW
dc.description.abstractDengue fever has been an infectious disease in Taiwan for a long time. In Taiwan, dengue fever is transmitted mainly by Aedes aegypti and Aedes albopictus. There are some symptoms if getting infected, such as having a high temperature and body aches. In the worst situation, dengue fever may lead to respiratory failure and shock. There is no effective vaccine that is capable of controlling dengue fever so far.
Thus, in order to control dengue fever spreading, the main task for authorities in health departments is to monitor the density of dengue mosquitos, so dengue fever can be prevented in advance. In recent years, dengue mosquito monitoring has been done through manual inspection. Because timeliness is very important for dengue fever prevention, manual inspection is generally not able to effectively catch real-time information related to mosquito spreading. Nor is the monitoring method capable of sending out warning messages in a real-time manner.
With the thriving development of the sensor and info-communication technology, many auto-monitoring systems have been designed for ecological and environmental monitoring. This study uses a digital signal processor as a kernel in a monitoring system, and a circuit with infrared sensors t is used to detect the frequency generated by the mosquito wings. Also, to achieve real-time monitoring, a GSM module is included in the monitoring system for wireless transmission.
Furthermore, a classification algorithm for Aedes aegypti and Aedes albopictus is developed by the MATLAB software in the study. To analyze the wings-waving signal of dengue mosquitos, the fast Fourier transform (FFT) is used to transform the signal from the time domain to the frequency domain. Then, an adaptive-network-based fuzzy inference system (ANFIS) is applied to classify the species of dengue mosquitos. The monitoring system in the study could effectively detect dengue mosquitos and accurately analyze the wings-waving signal. The experiment results also show that the ANFIS algorithm yields a great result in dengue mosquito classification.
Keywords: dengue mosquito, automatic detecting system, fast Fourier transform, ANFIS
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:58:59Z (GMT). No. of bitstreams: 1
ntu-102-R00631037-1.pdf: 5603187 bytes, checksum: 5b6c14b5c9ce1f686fc3e73071a85c91 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 前言 1
1.1研究背景 1
1.2研究動機及目的 2
1.3論文架構 3
第二章 文獻探討 4
2.1登革熱疫情探討 5
2.2單晶片嵌入式系統概述 14
2.3數位信號處理 16
2.4生態監測系統 19
2.5蚊類辨識與振翅行為相關探討 21
2.6模糊類神經網路 23
2.6.1類神經網路 24
2.6.1.1感知器 25
2.6.1.2倒傳遞演算法 26
2.6.2模糊理論 27
2.6.3適應性網路模糊推論系統 31
第三章 系統之硬體開發與軟體設計 35
3.1前端感測電路 38
3.2數位信號處理器應用開發 42
3.3軟體演算法設計 44
第四章 實驗結果與結論 51
4.1蚊蟲振翅信號之實際環境建構 51
4.2蚊蟲振翅信號樣本收集 53
4.3蚊蟲振翅信號辨識 55
第五章 建議與未來工作 60
參考文獻 62
dc.language.isozh-TW
dc.title登革熱病媒蚊即時偵測系統之設計與實現zh_TW
dc.titleDesign and Implementation of a Real-time Detection System for Dengue Mosquitoen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor江昭皚
dc.contributor.oralexamcommittee林達德,郭彥甫
dc.subject.keyword登革熱病媒蚊,自動化偵測系統,快速傅立葉轉換,適應性網路模糊推論系統,zh_TW
dc.subject.keyworddengue mosquito,automatic detecting system,fast Fourier transform,ANFIS,en
dc.relation.page67
dc.rights.note未授權
dc.date.accepted2013-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
5.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved