請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17158
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳國慶(Kuo-Ching Chen) | |
dc.contributor.author | Tzu-Kuan Hsiung | en |
dc.contributor.author | 熊子寬 | zh_TW |
dc.date.accessioned | 2021-06-07T23:58:54Z | - |
dc.date.copyright | 2013-08-28 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-16 | |
dc.identifier.citation | [1] H. Dou, X. Chai, W. Nie (2011) Numerical Study of the Flow Field in a Vertical Roller Mill. Applied Mechanics and Materials Vols. 52-54:659-663
[2] J. Galk, W. Peukert, J. Krahnen (1999) Industrial classification in a new impeller wheel classifier. Powder Technology Vols.105 186-189 [3] H. Y. Chen, W. M. Chen, H. L. Xu (2006) Effects of the Operation Parameters on the Air Classifier Performance. Journal of Sichuan University (Engineering Science Edition) Vol.38 No.3 [4] X. Hou, W. Chen, S. Hou, D. An (2012) Numerical Simulation and Analysis of air flow field in cavity of a vertical mill. 礦山機械第 40 卷第7 期72-74 [5] H. B. Vuthaluru, V. K. Pareek, R. Vuthaluru (2005) Multiphase flow simulation of a simplified. Fuel Processing Technology 86:1195–1205 [6] H. J. Qi, S. Y. Li, C. F. Ren, T. T. Li (2012) Numerical Simulation and analysis on diversion circle of vertical mill classifier. Journal of Zhejiang University of Technology Vol.40(1) 70–74 [7] Z. Xu, G. Gai, S. Lu, Q. Zhang (2000) The Effect of Spacing Between Blades on Classification. Mining and Metallurgical Engineering Vol.20 No.2 [8] C. Tong, S. Y. Li, H. J. Qi, C. F. Ren (2012) Analysis and Optimization of Blade Parameters in Vertical Milling Classifier. The Chinese Journal of Process Engineering Vol.12 No.1 [9] 豆海建 , 唐清華, 曾榮, 柴星騰, 聶文海, 申占民(2012) I 選粉機常見動葉片阻力特性研究. Science and Technology Innovation Herald No.27 20-22 [10] ANSYS FLUNET 14.0 User’s Guide - 6.7.1 Converting the Domain to Polyhedra(2011) [11] ANSYS FLUNET 14.0 Theory Guide - 2.2.1 Equations for Moving Reference Frame (2011) [12] 莊益彰(2012).「固液二相流計算平台開發與應用」:國立台灣大學應用力學研究所碩士論文 [13] ANSYS FLUNET 12.0 User’s Guide - 18.3.1 Spatial Discretization (2009) [14] ANSYS FLUNET 14.0 Theory Guide - 20.3.2 Temporal Discretization (2011) [15] J. Ferry, S. Balachandar (2001) A fast Eulerian method for disperse two-phase flow. International Journal of Multiphase Flow 27:1199-1226 [16] M. R. Maxey, J. J. Riley (1983) Equation of motion for a small rigid sphere in a non-uniform flow. Physics of Fluids 26:883-88998 [17] A. B. Basset (1961) Treatise on hydrodynamics. Cambridge: Deighton Bell and Co.Chapter 22 [18] P. G. Saffman (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400 [19] ANSYS FLUNET 14.0 User’s Guide - 25.1.2 Limitations of Modeling Discrete Phase Model (2011) [20] 陳尹中 (2011). 「旋轉流體中泰勒渦柱與池盆渦漩交互影響之數值計算分析」:國立台灣大學應用力學研究所碩士論文 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17158 | - |
dc.description.abstract | 立式磨粉機為一兼俱粉碎塊狀材料、運輸粉料、篩選粉料(和再粉磨)等特性
的機台,由於其優異的工作特性目前廣泛的運用於工業界各大不同領域中,如火 力發電、水泥業、化工業…等。立式磨粉機的改造與升級涉及多種領域之工程問 題, 而本文以立式磨粉機腔內流場的研究為主。本研究以ANSYS-FLUENT 電腦 數值模擬來進行立式磨粉機的參數化設計。利用控制體積法在所有的網格內求解 下列各統御分程式:RNG k-ε Model 求解立式磨粉機腔內部紊流場; Discrete Phase Model(DPM)求解粉磨顆粒的運動形態;求解Multiple Rotating Reference Frame(MRF)或Slidng Mesh Method(SMM)修正下的Navier-Stokes equation以描述立式磨粉機中旋轉機械所造成的流場行為。 本研究主要有兩大目的:一為提高磨腔區細顆粒的傳輸效率,二為以數值模擬 的方式預測選粉機的產品切割粒徑。第一個目的我們透過耦合MRF 描述下的流動 方程與RNG k-ε Model 計算得到流場收斂穩態解後,以DPM 丟入顆粒計算得到顆粒軌跡進而預測顆粒的傳輸效率。並改變立式磨粉機內的結構參數,做出一結構 參數化分析。第二個目的我們則透過耦合SMM 描述下的流動方程與RNG k-ε Model,再加上DPM Model 計算得到的暫態解,成功的以模擬的方式顯現出選粉 機的分級過程。 | zh_TW |
dc.description.abstract | Vertical roller mill is a machine that combines grinding, transporting and classification of material. Due to its excellent working ability the machine is widely used in various industries such as power plant, cement industry and chemical industry.The alteration and upgrading of vertical roller mill involve multiple physics problem,where in this paper we only focus on the flow field .We conducted a parameter analysis for the vertical roller mill by using a commercial CFD software ANSYS FLUENT. Wepredicted the flow field and particle motion by solving the following governing
equations in each cells. Solving the RNG k-ε Model to realize the turbulent flow inside the channel. Solving the Discrete Phase Model (DPM) to visualize the trajectories of particles. Solving a different form of Navier-Stokes equations which are rewritten by the Multiple Rotating Reference Frame (MRF) or by the Sliding Mesh Method (SMM) to predict the flow motion caused by the rotating machine. There are two major purposes in this paper: One is to improve the efficiency in the transportation of fine particles. The other is to predict the cut-off size of particle product that comes from the air classifier. We achieved the first purpose by the following procedure: solving the coupling of flow model that is based on MRF and RNG k-ε Model to obtain a steady state solution of flow field, and then inject the particles into this steady flow to calculate the particle motion by DPM. The information from the DPM calculation would indicate the efficiency of particle transportation. We changed the geometry of the physical model in order to establish a parameter analysis of vertical roller mill, and we achieved the second purpose by solving the coupling of flow model that is based on SMM, RNG k- ε Model, and DPM. Therefore, we are able to successfully model the powder classification process by numerical simulation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:58:54Z (GMT). No. of bitstreams: 1 ntu-102-R00543072-1.pdf: 7794110 bytes, checksum: d854ddc98739fdc49e71baba43695ae9 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝...................................................... i
中文摘要.................................................. ii 英文摘要................................................. iii 目錄 ......................................................v 圖目錄 ................................................. viii 表目錄................................................... xii 第一章 緒論 ............................................... 1 1.1 研究動機與背景.......................................... 1 1.2 文獻回顧............................................... 2 1.2.1 立式磨粉機全系統壓降設計分析............................. 4 1.2.2 理論公式預測切割粒徑................................... 6 1.2.3 粉料傳輸系統(磨腔區)之流場模擬與結構參數化分析.............. 8 1.2.4 選粉系統的設計....................................... 12 1.3 論文架構...............................................20 第二章 數值方法 ........................................... 21 2.1 FLUENT 的使用流程..................................... 21 2.1.1 前處理器(pre-processor)............................. 22 2.1.2 求解器(solver)...................................... 22 2.1.3 後處理器(post-processor) ........................... 23 2.2 網格的生成............................................ 24 2.2.1 網格繪製............................................ 25 2.2.2 數值擴散............................................ 25 2.2.3 網格品質............................................ 26 2.3 數學模型.............................................. 27 2.3.1 Turbulence Model................................... 27 2.3.2 Discrete Phase Model .............................. 30 2.3.3 Multiple Rotating Reference Frame Model............ 32 2.3.4 Sliding Mesh Method ............................... 34 2.4 數值解法.............................................. 36 2.4.1 空間離散方法......................................... 37 2.4.2 時間離散方法......................................... 41 2.4.3 分離解法(segregated) ............................... 42 2.4.4 壓力與速度耦合關係之處理............................... 44 第三章立式磨粉機磨腔區之參數化設計 ............................ 52 3.1 分析策略.............................................. 52 3.2 物理模型的建構和網格的畫分............................... 54 3.3 理論分析.............................................. 59 3.3.1 理論分析粗細顆粒的粗略受力情形.......................... 59 3.3.2 理論分析各項顆粒作用力................................. 61 3.4 模擬配置.............................................. 63 3.4.1 模型的選用和雙向耦合模擬............................... 63 3.4.2 邊界條件的設定....................................... 67 3.4.3 時間步的估算......................................... 70 3.5 結果與討論............................................ 71 第四章立式磨粉機之選粉機參數設計 ...............................78 4.1 以多重座標系MRF 穩態模擬進行選粉機效能的模擬結果............. 78 4.1.1 結果與討論.......................................... 78 4.2 以滑移網格SMM 穩態模擬進行選粉機效能的模擬結果.............. 81 4.2.1 分析策略............................................ 81 4.2.2 物理模型的建構和網格的畫分............................. 84 4.2.3 理論分析............................................ 85 4.2.4 模擬配置............................................ 86 4.2.5 結果與討論.......................................... 90 第五章結論 ............................................... 94 5.1 總結................................................. 94 5.2 未來與展望............................................ 95 參考文獻.................................................. 97 | |
dc.language.iso | zh-TW | |
dc.title | 以離散相模型(DPM)評估立式磨粉機之效能 | zh_TW |
dc.title | Evaluation of the Efficiency of Vertical Roller Mill via
Discrete Phase Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭志禹(Chih-Yu Kuo),周逸儒(Yi-Ju Chou),林祺皓(Chi-Hao Lin) | |
dc.subject.keyword | 顆粒分級,離散相模組,選粉機,立式磨粉機,多重參考座標系法,多相流,滑移網格法, | zh_TW |
dc.subject.keyword | Powder classification,Discrete Phase Model,Air classifier,Vertical roller mill,Multiple Rotating Reference Frame,Multiphase Flow,Sliding Mesh Method, | en |
dc.relation.page | 98 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 7.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。