Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17149
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡定平
dc.contributor.authorChun-Yen Liaoen
dc.contributor.author廖俊諺zh_TW
dc.date.accessioned2021-06-07T23:58:32Z-
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-17
dc.identifier.citation1.6
[1] H. Raether, 'Surface plasmons on smooth and rough surfaces and on gratings,' Springer Tracts in Modern Physics 111, 1-133 (1988).
[2] R. W. Wood, 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' Philosophical Magazine 4, 396-402 (1902).
[3] E. Kretschm and H. Raether, 'Radiative decay of non radiative surface plasmons excited by light,' Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie A 23, 2135-& (1968).
[4] A. Otto, 'Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection,' Zeitschrift Fur Physik 216, 398-& (1968).
[5] H. F. Ghaemi, T. Thio, and D. E. Grupp, 'Surface plasmons enhance optical transmission through subwavelength holes.' Physical Review B 58, 6779-6782 (1998).
[6] H. J. Lezec, and T. Thio 'Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays.' Optics Express 12, 3629-3651 (2004).
[7] V. G. Veselago, 'Electrodynamics of substances with simultaneously negative values of giama and mu,' Soviet Physics Uspekhi-Ussr 10, 509-& (1968).
[8] J. B. Pendry, 'Negative refraction makes a perfect lens,' Physical Review Letters 85, 3966-3969 (2000).
[9] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, 'Composite medium with simultaneously negative permeability and permittivity,' Physical Review Letters 84, 4184-4187 (2000).
[10] R. A. Shelby, D. R. Smith, and S. Schultz, 'Experimental verification of a negative index of refraction,' Science 292, 77-79 (2001).
[11] N. Fang, H. Lee, C. Sun, and X. Zhang, 'Sub-diffraction-limited optical imaging with a silver superlens,' Science 308, 534-537 (2005).
[12] Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, 'Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,' Physical Review Letters 102, 093901 (2009).
[13] J. Valentine, J. Li, T. Zentgraf, and X. Zhang, 'An optical cloak made of dielectrics,' Nature metarials 8, 568-571 (2009).
[14] B. Bai, Y. Svirko, J. Turunen, and T. Vallius, 'Optical activity in planar chiral metamaterials: Theoretical study,' Physical Review A 76, 023811 (2007).
[15] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M Soukoulis, 'Chiral metamaterials: simulations and experiments,' Journal of Optics a-Pure and Applied Optics 11, 114003 (2009).
[16] E. Plum, V. A. Fesotov, and N. I. Zheludev, 'Planar metamaterial with transmission and reflection that depend on the direction of incidence,' Applied Physics Letters 94, 131901 (2009).
[17] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, 'Perfect metamaterial absorber,' Physical Review Letters 100, 207402 (2008).
[18] C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, 'Manipulating the loss in electromagneticcloaks for perfect wave absorption,' Optics Express 17, 8467-8475 (2009).
[19] S. Palomba, M. Danckwerts, and L. Novotny 'Nonlinear plasmonics with gold nanoparticle antenna,' Journal of Optics A: Pure and Applied Optics 11, 114030 (2009).
[20] J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, 'Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,' Physical Review Letters 103, 266802 (2009).
[21] Ia. B. Zel’dovich, 'The relation between decay asymmetry and dipole moment of elementary particles,' Journal of experimental and theoretical physics of the Academy of Sciences of the USSR 6, 1184 (1958).
[22] V. M. Dubovik and V. V. Tugushev, 'Toroid moments in electrodynamics and solid-state physics,' Physics Reports 187, 145 (1990).
[23] A. D. Boardman, K. Marinov, N. Zheludev, and V. A.Fedotov, 'Dispersion properties of nonradiating configurations: finite-difference time-domain modeling,' Physical Review E 72, 036603 (2005).
[24] A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, 'Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave,' Physical Review Letters 56, 792-795 (1986).
[25] G. N. Afanasiev, 'Simplest source of electromagneticfields as a tool for testing reciprocity-like theorems,' Journal of Physics D: Applied Physics 34, 539 (2001).
[26] G. N. Afanasiev and Yu. P. Stepanovsky, 'The electromagneticfield of elementary time-dependent toroidal sources,' Journal of Physics A: Mathematical and General 28, 4565 (1995).
[27] G. N. Afanasiev and V. M. Dubovik, 'Some remarkable charge-current configurations,' Physics of Particle and Nuclei 29, 366 (1998).
[28] A. Costescu and E. E. Radescu, 'Dynamic toroid polarizability of atomic hydrogen,' Annals of Physics 209, 13–74 (1991).
[29] A. A. Simpson, Y. Tao, P. G. Leiman, M. O. Badasso, Y. He, P. J. Jardine, N. H. Olson, M. C. Morais, S. Grimes, D. L. Anderson, T. S. Baker, and M. G. Rossmann, 'Structure of the bacteriophage φ 29 DNA packaging motor,' Nature 408, 745–750 (2000).
[30] R. Kovall and B. W. Matthews, 'Toroidal structure of λ-exonuclease,' Science 277, 1824–1827 (1997)
[31] A. A. Antson, J. Otridge, A. M. Brozozowski, E. J. Dodson, G. G. Dodson, K. S. Wilson, T. M. Smith, M. Yang, T. Kurecki, and P. Gollnick, 'The structure of trp RNA-binding attenuation protein,' Nature 374, 693-700 (1995).
[32] A. Ceulemans and L. F. Chibotaru, “Molecular anapole moments,” Physical Review Letters 80, 1861–1864 (1998)
[33] E. E. Radescu, and G. Vaman, 'Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,' Physical Review E 65, 046609 (2002).
[34] K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, 'Toroidal metamaterial,' New Journal of Physics 9, 324 (2007).
[35] N. Papasimakis, V. A. Fedotov, K. Marinov, and N. I. Zheludev, 'Gyrotropy of a metamolecule: Wire on a torus,' Physical Review Letters 103, 093901 (2009).
[36] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, 'Toroidal dipolar response in a metamaterial,' Science 330, 1510–1512 (2010).
[37] Z. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, ' Toroidal dipole response in a multifold double-ring metamaterial,'Optics Express 20, 13065-13070 (2012).
[38] V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, 'Non-trivial non-Radiating excitation as a mechanism of resonant transparency in toroidal metamaterials,' arXiv:1211.3840.
[39] L. Y. Guo, M. H. Li, Q. W. Ye, B. X. Xiao, and H. L. Yang, 'Electric toroidal dipole response in split-ring resonator metamaterials,' European Physical Journal B: Condensed Matter and Complex Systems 85, 208 (2012).
[40] Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, ' Low-loss and high-Q planar metamaterial with toroidal moment,' Physical Review B 87, 115417 (2013).
[41] Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov,V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, 'Toroidal dipolar response in a metamaterial,' Optics Express 20, 1760-1768 (2012).
[42] V. Savinov, V. A. Fedotov, W. T. Chen, Y. W. Huang, D. P. Tsai, D. B. Burckel, I. Brener, and N. I. Zheludev, 'Toroidal photonic metamaterial,' CLEO , QE2M (2012).
[43] Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, 'Optical toroidal dipolar response by an asymmetric double-bar metamaterial,' Applied Physics Letters 101, 144105 (2012).
[44] B. Ogut, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, 'Toroidal Plasmonic Eigenmodes in Oligomer Nanocavities for the Visible,' Nano Letters 12, 5239-5244 (2012).
2.4
[1] K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, 'Toroidal metamaterial,' New Journal of Physics 9, 324 (2007).
[2] N. Papasimakis, V. A. Fedotov, K. Marinov, and N. I. Zheludev, 'Gyrotropy of a metamolecule: Wire on a torus,' Physical Review Letters 103, 093901 (2009).
[3] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, 'Toroidal dipolar response in a metamaterial,' Science 330, 1510–1512 (2010).
[4] Z. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, ' Toroidal dipole response in a multifold double-ring metamaterial,'Optics Express 20, 13065-13070 (2012).
[5] V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, 'Non-trivial non-Radiating excitation as a mechanism of resonant transparency in toroidal metamaterials,' arXiv:1211.3840.
[6] L. Y. Guo, M. H. Li, Q. W. Ye, B. X. Xiao, and H. L. Yang, 'Electric toroidal dipole response in split-ring resonator metamaterials,' European Physical Journal B: Condensed Matter and Complex Systems 85, 208 (2012).
[7] Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, ' Low-loss and high-Q planar metamaterial with toroidal moment,' Physical Review B 87, 115417 (2013).
[8] Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov,V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, 'Toroidal dipolar response in a metamaterial,' Optics Express 20, 1760-1768 (2012).
[9] V. Savinov, V. A. Fedotov, W. T. Chen, Y. W. Huang, D. P. Tsai, D. B. Burckel, I. Brener, and N. I. Zheludev, 'Toroidal photonic metamaterial,' CLEO , QE2M (2012).
[10] Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, 'Optical toroidal dipolar response by an asymmetric double-bar metamaterial,' Applied Physics Letters 101, 144105 (2012).
[11] B. Ogut, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, 'Toroidal Plasmonic Eigenmodes in Oligomer Nanocavities for the Visible,' Nano Letters 12, 5239-5244 (2012).
[12] Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, 'Plasmonic nanoantenna arrays for the visible,' Metamaterials 2, 45-51 (2008).
[13] COMSOL Multiphysics, 'RF module user’s guide.'
[14] Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, 'Design of plasmonic toroidal metamaterials at optical frequencies, ' Optics Express 20, 1760-1768 (2012).
3.3
[1] I. Maller, M. Hazakis, and R. Srinivasan, 'High resolution positive resists for electron beam exposure,' Journal of Research and Development 12, 251 (1968).
[2] http://www.zeon.co.jp/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17149-
dc.description.abstract環形結構在自然界中在生物分子、病毒、蛋白質中相當常見。環形矩因其訊號較一般偶極矩弱,而常被忽略。近年來,藉由超穎材料這種人造物質能將環形矩訊號放大,以便我們研究並探討。在文獻上的環矩形超穎材料的共振波段幾乎都落在微波範圍,因為在光學波段的環形矩超穎材料較難製作出來,必須克服金屬在光學波段中的焦耳損耗以及製程技術。本文藉由一啞鈴形金平板與兩個金棒彼此間的耦合,設計新型的環形矩超穎材料,利用有限元素分析法模擬,計算不同結構幾何參數與超穎材料多極矩輻射強度的影響,並以電子束二次對準曝光技術成功製作出由正向入射的方式,在光學波段激發環形矩共振,將環形矩超穎材料響應波長由微波波段拓展到光學波段,並透過多極矩輻射強度色散譜圖的計算及分析模擬結構磁場驗來證明並實現環形矩訊號的存在。zh_TW
dc.description.abstractToroidial structures in biomolecules, viruses, protein are quite common. People do not often to discuss toroidal moment because the signal is weaker than other common dipole moment. Recently, toroidal moments signal can be amplified by using such artificial substances metamaterials. In the literature, toroidal metamaterial resonance region almost in the microwave range, because it’s difficult to overcome Joule losses and process technology at the optical region. In this paper, we design a new toroidal metamaterials by use mutual coupling between a dumbbell-shaped gold plate with two gold bars. Use the finite element method simulation, computational geometry with different structures metamaterial multipole moments of the radiated power. Using second alignment e-beam lithography technology successfully fabricated sample, the toroidal metamaterial response wavelength by the microwave region expanded to optical wavelengths and radiated power through multipole moment strength calculation and analysis of the dispersion spectra simulated structural magnetic moments of experience to achieve the toroidal signal exists.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:58:32Z (GMT). No. of bitstreams: 1
ntu-102-R00222042-1.pdf: 5676652 bytes, checksum: ebb81d3be7b4267212de02f6f0ebfad9 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書I
中文摘要II
英文摘要III
致謝IV
圖目錄VI
第一章 緒論1
1.1 前言1
1.2 表面電漿子發展背景與原理2
1.2.1 表面電漿子發展背景2
1.2.2 表面電漿共振2
1.3 超穎材料10
1.4 環形矩12
1.5 環形矩超穎材料15
1.6 參考資料18
第二章 樣品設計與模擬計算方法24
2.1 研究動機24
2.2 設計原理26
2.3 數值模擬計算28
2.3.1 前言28
2.3.2 Drude-Lorentz model28
2.3.3 模擬計算方法介紹29
2.3.4 模擬計算空間設定31
2.3.5 多極矩散射強度計算33
2.4 參考資料35
第三章 樣品製作與量測37
3.1 前言37
3.2 實驗儀器與實驗方法介紹38
3.2.1 電子束直寫曝光微影系統 38
3.2.2 樣品製作流程 41
3.3 參考資料50
第四章 結果、分析與討論51
4.1 前言51
4.2 模擬分析與結果52
4.3 實驗與量測結果56
第五章 總結58
附錄59
dc.language.isozh-TW
dc.subject電漿子學zh_TW
dc.subject超穎材料zh_TW
dc.subject環形矩zh_TW
dc.subject表面電漿子zh_TW
dc.subjectSurface plasmonsen
dc.subjectMetamaterialsen
dc.subjectToroidal multipolesen
dc.subjectPlasmonicsen
dc.title三維電漿環形矩超穎材料之研究zh_TW
dc.titleThree-dimensional Plasmonic Toroidal Metamaterialen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee任貽均,江海邦,王智明
dc.subject.keyword超穎材料,環形矩,表面電漿子,電漿子學,zh_TW
dc.subject.keywordMetamaterials,Toroidal multipoles,Surface plasmons,Plasmonics,en
dc.relation.page60
dc.rights.note未授權
dc.date.accepted2013-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved