Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻(Cheng-Hung Wu)
dc.contributor.authorTing-Jui Changen
dc.contributor.author張庭瑞zh_TW
dc.date.accessioned2021-06-07T23:58:14Z-
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-07
dc.identifier.citation參考文獻
[1] S. S. Allemann, J.W. F. van Mil, L. Botermann, K. Berger, N. Griese, K. E. Hersberger, ”Pharmaceutical care: the PCNE definition 2013,” International Journal of Clinical Pharmacy, vol. 36, no. 3, pp.544–555, 2014.
[2] B. Zmazek and A. Taranenko, 'Capacitated VRP with time wi ndows and multiple trips within working day,' Proceedings on WSEAS Int. Conf. on Computers, pp. 93-99, 2006.
[3] H. Lei, G. Laporte, B. Guo, 'The capacitated vehicle routing problem with stochastic demands and time windows,' Computers Operations Research, vol. 38, pp. 1775-1783, 2011.
[4] A. Chbichib, R. Mellouli, and H. Chabchoub, “Profitable Vehicle Routing Problem with Multiple Trips: Modeling and constructive heuristics,” Proceeding on Int. Conf. on Logistics, 2011.
[5] J. Brandao and A. Mercer, 'The Multi-Trip Vehicle Routing Problem,' Journal of the Operational Research Society, pp. 799-805, 2017.
[6] N. Wassan, N. Wassan, G. Nagy, S. Salhi, 'The Multiple Trip Vehicle Routing Problem with Backhauls: Formulation and a Two-Level Variable Neighbourhood Search,' Computers Operations Research, vol. 78, pp. 454-467, 2017.
[7] Y. Tian, K. C. K. Lee, and W. C. Lee, “Finding skyline paths in road networks,” Proceeding on ACM Int. Conf. on Advances in Geographic Information Systems (SIGSPATIAL), pp. 444-447, 2009.
[8] H. P. Kriegel, M. Renz, and M. Schubert, “Route skyline queries: a multi-preference path planning approach,” Proceeding on IEEE Int. Conf. on Data Engineering (ICDE), pp. 261-272, 2010.
[9] Y. C. Chen and C. Lee, 'Skyline Path Queries with Aggregate Attributes,' IEEE Access, vol. 4, pp. 4690-4706, 2016.
[10] 張玉圖,針對路徑群組的一個有效率的天際線查詢演算法,逢甲大學資訊工程學系碩士論文,2015。
[11] S. Aljubayrin, Z. He, R. Zhang, “Skyline trips of multiple POIs categories,” Proceeding on Int. Conf. on Database Systems for Advanced Applications (DASFAA), pp.189-206, 2015.
[12] G. B. Dantzig, J. H. Ramser, “The Truck Dispatching Problem,” Management Science, Vol. 6, No. 1, pp. 80-91, Oct., 1959.
[13] K. Bulbul, A. Sen, G. Ulusoy, “Classic Transportation Problems,” in Logistics Engineering Handbook, Chapter 16, 2007.
[14] E. Taillard, G. Laporte, M. Gendreau, “Vehicle Routing Problem with Multiple Use of Vehicles,” Journal of the Operational Research Society, Vol. 47, pp. 1065-1070, 1996.
[15] J. Brandao, and A. Mercer, “The Multi-trip Vehicle Routing Problem,” Journal of the Operational Research Society, Vol. 49, pp. 799-805, 1998.
[16] J. Brandao, and A. Mercer, “A Tabu Search Algorithm for the Multi-trip Vehicle Routing and Scheduling Problem,” European Journal of Operational Research, Vol. 100, pp. 180-191, 1997.
[17] R. J. Petch, S. Salhi, “A Multi-phase Constructive Heuristic for the Vehicle Routing Problems with Multiple Trips,” Discrete Applied Mathematics, Vol. 133, pp. 69-92, 2004.
[18] R. J. Petch, S. Salhi, “A GA Based Heurisric for the Vehicle Routing Problem with Multiple Trips,” Journal of Mathematical Modeling and Algorithms, Vol. 6-4, pp. 591-613, 2007.
[19] G Laporte, 'A concise guide to the Traveling Salesman Problem,' Journal of the Operational Research Society,” Palgrave Macmillan: The OR Society, vol. 61(1), pp. 35-40, January, 2010.
[20] M. D. Arango, C. A. Serna, “A Memetic Algorithm for the Traveling Salesman Problem,” IEEE Latin America Transactions, Vol. 13, No. 8, Aug, 2015.
[21] B. Bontoux, C. Artigues, and D. Feillet, “A memetic algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem,” Computers and Operations Research, 37(11):1844-1852, November 2010.
[22] M.N. Rice, V.J. Tsotras, “Engineering generalized shortest path queries,” IEEE 29th International Conference on Data Engineering (ICDE), 949-960, 2013.
[23] T. Bektas, “The multiple traveling salesman problem: an overview of formulations and solution procedures,” Omega, Vol. 34, No.3, 2006, pp. 209-219.
[24] S. Ghafurian, N. JAVADIAN, “An ant colony algorithm for solving fixed destination multi-depot multiple traveling salesmen problems,” Applied Soft Computing, Vol. 11, No. 1, pp. 1256-1262, 2010.
[25] D. Manerba, R. Mansini, J. Riera-Ledesma, “The Traveling Purchaser Problem and its Variants,” European Journal of Operational Research, Vol. 259 ,No. 1, pp. 1-18, 2017.
[26] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” Proceeding on Special Interest Group on Management of Data (SIGMOD), pp.47-57, 1984.
[27] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An Efficient Access Methodfor Similarity Search in Metric Spaces,” Proceeding on Int. Conf. on Very Large Data Bases (VLDB), 1997.
[28] E. W. Dijkstra, 'A note on two problems in connexion with graphs,' Numerische Mathematik, pp. 1:269-271, 1959.
[29] P. E. Hart, N. J. Nilsson, and B. Raphael, 'A formal basis for the heuristic determination of minimum cost Paths,' IEEE Transactions on Systems Science and Cybernetics, 100-107, 1968.
[30] S. Anthony, 'Optimal and efficient path planning for partially-known environments,' Proceeding on IEEE Int. Conf. Robotics and Automation, pp. 3310-3317, 1994.
[31] A. Nash, K. Daniel, S. Koenig, and S. Felner, 'Theta*: Any-angle path planning on grids,' Proceedings on AAAI Conf. on Artificial Intelligence, pp. 1177-1183, 2007.
[32] A. Nash, S. Koenig, M. Likhachev, 'Incremental phi*: Incremental any-angle path planning on grids', Proceedings on Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 1824-1830, 2009.
[33] O. Khatib, 'Real-Time Obstacle Avoidance for Manipulators and Mobile Robots', Proceedings on IEEE Conf. on Robotics and Automation, pp. 500-505, 1985.
[34] L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe, 'Analysis of probabilistic roadmaps for path planning', Proceedings on IEEE Int. Conf. on Robotics and Automation, pp. 3020-3026, 1996.
[35] S. M. LaValle, 'Rapidly-exploring random trees: A new tool for path planning', Proceeding on TR 98-11, Computer Science Dept., Iowa State University, 1998.
[36] W. T. Hsu, Y. T. Wen, L. Y. Wei, and W. C. Peng, “Skyline Travel Routes: Exploring Skyline for Trip Planning,” Proceeding on IEEE Int. Conf. on Mobile Data Management (MDM), 31-36, 2014.
[37] J. H. Holland, “Outline for a logical theory of adaptive systems,” Journal of the ACM, vol. 9, no. 3, pp. 297-314., 1962.
[38] J.H. Holland, “Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence,” University of Michigan Press., 1975.
[39] H. A. Simon, “The new science of management decision,” in The Ford distinguished lectures, Vol. 3, 1960.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17143-
dc.description.abstract隨著台灣人口逐漸老化,長照2.0中的居家藥事服務已經成為許多全民健保特約藥局經營者關注的焦點,並且傾全力發展此項業務。而隨著業務逐漸開展,接受服務的慢箋領藥個案人數逐漸增加,每間藥局開始面臨新的問題――「如何找出高效率的送藥排程組合?」,意即在次工作日居家藥事服務需送確定後,如何安排多位執勤藥師的送藥順序,以達到各家特約藥局訂定的獲利與成本營業目標,如掉單率最低,或是送藥路程總距離最短……等。特別值得一提的是,本問題中每日待安排的個案人數眾多,可行的居家藥事服務排程組合數量也會呈指數成長,但特約藥局每日可進行排程的時間有限。在這個狀況下,過往許多已發展的演算法,如「多行程車輛路徑排程演算法」或「天際線路徑查詢演算法」都無法順利應用在這個問題上。本論文探討居家藥事服務之智慧化排程所需要素與執行步驟,並分別調查這些執行步驟的可行演算法,最終測試這些演算法串連後是否適用於這個問題。最後,為了驗證本論文所提出演算法的效率與效能,本論文使用台灣南部六縣市的真實路網結合虛擬的個案資料點位來進行模擬。zh_TW
dc.description.abstractWith Taiwan’s recent demographics aging gradually, the management and development of homecare pharmaceutical services in the Long-Term Care Services 2.0 becomes the center focus of many institutional pharmacies. The increasing demand of homecare pharmaceutical services brings a critical question for every service provider: how to schedule a more effective delivery routine? Specifically, the logistics and management, of delivery of prescriptions to patient homes, for on-duty pharmacist on a daily basis in the most cost-effective and efficient manner that also meets the business operation goals such as high retention rates. In the past, pharmacies’ delivery scheduling are based on calculations such as the Multi-Trip Vehicle Routing and Scheduling Problem and the Skyline Path Query Algorithm; however, these models cannot sufficiently address the needs of pharmacies delivery system because due to time constraints and the rapid increasing demand, on-duty pharmacists simply cannot fit more scheduling in a day’s work with the current workload. To address the eminent gap seen in the current homecare pharmaceutical services, this research aims to explore the critical elements and procedures required for smart scheduling of homecare pharmaceutical services and examines feasible algorithms for said procedures, and tests whether these algorithms are applicable in solving the core issue. Finally, to validate the efficiency and effectiveness of the algorithm proposed in this research, simulations were ran using the actual roadmap networks across six southern cities with virtual patients as test subjects.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:58:14Z (GMT). No. of bitstreams: 1
U0001-0608202023301700.pdf: 1527775 bytes, checksum: f6ce992e79d598b352875a245771149e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目 錄
口試委員會審定書……………………………………………………………………#
誌謝……………………………………………………………………………………i
摘要……………………………………………………………………………………ii
Abstract …………………………………………………………………………………iii
第一章 緒論……………………………………………………………………1
第一節 研究動機與問題背景…………………………………………………1
第二節 文獻回顧及本論文之議題……………………………………………3
第三節 研究項目與研究成果…………………………………………………4
第二章 與HPS相關之文獻探討………………………………………………5
第一節 車輛路徑問題…………………………………………………………5
第二節 旅行推銷員問題………………………………………………………7
第三章 智慧化排程要素探討及案例說明……………………………………9
第四章 SPQ中適用HPS問題之演算法介紹…………………………………13
第一節 空間索引架構…………………………………………………………13
第二節 路徑規劃………………………………………………………………14
第三節 排程方法………………………………………………………………17
第五章 應用SPQ演算法於HPS問題的執行方案……………………………20
第一節 建立DBSCAN-tree的演算法…………………………………………22
第二節 基於次工作日HPS需求資訊更新DBSCAN-tree的演算法…………23
第三節 多條件居家藥事服務排程演算法(MCSAHPC)……………………24
第六章 實作簡易演算法之效能初探…………………………………………28
第一節 實驗資料集及參數介紹………………………………………………28
第二節 歷史個案資料點位數對演算法效能及效率的影響…………………31
第三節 次工作日HPS需求個案資料點位數對演算法效能及效率影響……33
第四節 執勤藥師人數對演算法效能及效率的影響…………………………35
第七章 結論與未來工作………………………………………………………38
參考文獻………………………………………………………………………………39
dc.language.isozh-TW
dc.subject索引樹zh_TW
dc.subject多行程車輛路徑問題zh_TW
dc.subject天際線查詢zh_TW
dc.subject路徑規劃zh_TW
dc.subjectMulti-Trip Vehicle Routing Problemen
dc.subjectIndexed Treeen
dc.subjectPath Planningen
dc.subjectSkyline Queryen
dc.title居家藥事服務之智慧化排程初探zh_TW
dc.titleA Preliminary Study of Intelligent Scheduling for Homecare Pharmaceutical Serviceen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪一薰(I-Hsuan Hong),陳文智(Wen-Chih Chen)
dc.subject.keyword多行程車輛路徑問題,天際線查詢,路徑規劃,索引樹,zh_TW
dc.subject.keywordMulti-Trip Vehicle Routing Problem,Skyline Query,Path Planning,Indexed Tree,en
dc.relation.page43
dc.identifier.doi10.6342/NTU202002591
dc.rights.note未授權
dc.date.accepted2020-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0608202023301700.pdf
  未授權公開取用
1.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved