請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17134完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧彥文(Yen-Wen Lu) | |
| dc.contributor.author | Hao-Bin Cheng | en |
| dc.contributor.author | 鄭浩彬 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:57:48Z | - |
| dc.date.copyright | 2013-09-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-18 | |
| dc.identifier.citation | Atchley, A. A. and A. Prosperetti. 1989. The crevice model of bubble nucleation. The Journal of the Acoustical Society of America 86,1065-1084.
Barthlott, W. and C. Neinhuis. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202,1-8. Bhushan, B. 2007. Adhesion of multi-level hierarchical attachment systems in gecko feet. Adhesion Science and Technology 21 Bhushan, B. 2009. Biomimetics: lessons from nature–an overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367,1445-1486. Callies, M. and D. Quere. 2005. On water repellency. Soft Matter 1,55-61. Cassie, A. B. D. and S. Baxter. 1944. Wettability of porous surfaces. Transactions of the Faraday Society 40,546-551. Chang, F.-M., Y.-J. Sheng, S.-L. Cheng and H.-K. Tsao. 2008. Tiny bubble removal by gas flow through porous superhydrophobic surfaces: Ostwald ripening. Applied Physics Letters 92,264102-264102-264103. Chaudhury, M. K. and G. M. Whitesides. 1992. How to Make Water Run Uphill. Science 256,1539-1541. Chen, R. and T. S. Zhao. 2007. Performance characterization of passive direct methanol fuel cells. Journal of Power Sources 167,455-460. Cheng, D. and H. Jiang. 2009. A debubbler for microfluidics utilizing air-liquid interfaces. Applied Physics Letters 95,214103-214103. Chiang, C.-K. and Y.-W. Lu. 2011. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces. Journal of Micromechanics and Microengineering 21,075003. Cooke, D. and S. G. Kandlikar. 2011. Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels. Journal of Heat Transfer 133,052902-052902. Cubaud, T. and C.-M. Ho. 2004. Transport of bubbles in square microchannels. Physics of Fluids 16,4575-4585. Cubaud, T., M. Tatineni, X. Zhong and C.-M. Ho. 2005. Bubble dispenser in microfluidic devices. Physical Review E 72,037302. Dawood, M. K., H. Zheng, N. A. Kurniawan, K. C. Leong, Y. L. Foo, R. Rajagopalan, S. A. Khan and W. K. Choi. 2012. Modulation of surface wettability of superhydrophobic substrates using Si nanowire arrays and capillary-force-induced nanocohesion. Soft Matter 8,3549-3557. Eddington, R. I. and D. B. R. Kenning. 1979. The effect of contact angle on bubble nucleation. International Journal of Heat and Mass Transfer 22,1231-1236. Feng, L., Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia and L. Jiang. 2008. Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir 24,4114-4119. Gao, X., X. Yao and L. Jiang. 2007. Effects of Rugged Nanoprotrusions on the Surface Hydrophobicity and Water Adhesion of Anisotropic Micropatterns. Langmuir 23,4886-4891. Geng, X., H. Yuan, H. N. Oguz and A. Prosperetti. 2001. Bubble-based micropump for electrically conducting liquids. Journal of Micromechanics and Microengineering 11:270. Goldstein, T., X. Bresson and S. Osher. 2010. Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction. J Sci Comput 45,272-293. Hnatovsky, R. T. C. 2004. Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe. Opt. Express 12 Huang, Z., N. Geyer, P. Werner, J. de Boor and U. Gosele. 2011. Metal-Assisted Chemical Etching of Silicon: A Review. Advanced Materials 23,285-308. Jiang, X. G. L. 2004. Biophysics: Water-repellent legs of water striders. Nature 432 Jin, M., X. Feng, L. Feng, T. Sun, J. Zhai, T. Li and L. Jiang. 2005. Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. Advanced Materials 17,1977-1981. Jing-Tang, Y., J. C. Chen, H. Ker-Jer and J. A. Yeh. 2006. Droplet manipulation on a hydrophobic textured surface with roughened patterns. Microelectromechanical Systems, Journal of 15,697-707. Jones, S. F., G. M. Evans and K. P. Galvin. 1999. Bubble nucleation from gas cavities — a review. Advances in Colloid and Interface Science 80,27-50. Jun, T. K. and C.-J. C. J. Kim. 1998. Valveless pumping using traversing vapor bubbles in microchannels. Journal of Applied Physics 83,5658-5664. Jung, J.-Y., Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park and J.-H. Lee. 2010. A strong antireflective solar cell prepared by tapering silicon nanowires. Opt. Express 18,A286-A292. Jung, Y. C. and B. Bhushan. 2007. Wetting transition of water droplets on superhydrophobic patterned surfaces. Scripta Materialia 57,1057-1060. Kang, C. K., S. M. Lee, I. D. Jung, P. G. Jung, S. J. Hwang and J. S. Ko. 2008. The fabrication of patternable silicon nanotips using deep reactive ion etching. Journal of Micromechanics and Microengineering 18,075007. Kim, J., H. Han, Y. H. Kim, S.-H. Choi, J.-C. Kim and W. Lee. 2011. Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires. ACS Nano 5,3222-3229. Kim, L., M. D. Vahey, H.-Y. Lee and J. Voldman. 2006. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab on a Chip 6,394-406. Kulinich, S. A. and M. Farzaneh. 2009. Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces. Applied Surface Science 255,4056-4060. Lai, Y.-H., J.-T. Yang and D.-B. Shieh. 2010. A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces. Lab on a Chip 10,499-504. Leclerc, E., Y. Sakai and T. Fujii. 2003. Cell Culture in 3-Dimensional Microfluidic Structure of PDMS (polydimethylsiloxane). Biomed Microdevices 5,109-114. Lee, P. C., F. G. Tseng and C. Pan. 2004. Bubble dynamics in microchannels. Part I: single microchannel. International Journal of Heat and Mass Transfer 47,5575-5589. Litterst, C., S. Eccarius, C. Hebling, R. Zengerle and P. Koltay. 2006. Increasing μDMFC efficiency by passive CO 2 bubble removal and discontinuous operation. Journal of Micromechanics and Microengineering 16,S248. Liu, C., J. A. Thompson and H. H. Bau. 2011. A membrane-based, high-efficiency, microfluidic debubbler. Lab on a Chip 11,1688-1693. Loos, K., S. B. Kennedy, N. Eidelman, Y. Tai, M. Zharnikov, E. J. Amis, A. Ulman and R. A. Gross. 2005. Combinatorial Approach To Study Enzyme/Surface Interactions. Langmuir 21,5237-5241. Lu, G. Q. and C. Y. Wang. 2004. Electrochemical and flow characterization of a direct methanol fuel cell. Journal of Power Sources 134,33-40. Lubetkin, S. D. 1989. The nucleation and detachment of bubbles. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 85,1753-1764. Lubetkin, S. D. 1995. The fundamentals of bubble evolution. Chemical Society Reviews 24,243-250. McHale, G., N. J. Shirtcliffe and M. I. Newton. 2004. Contact-Angle Hysteresis on Super-Hydrophobic Surfaces. Langmuir 20,10146-10149. Meng, D. D. and C. J. Kim. 2008. Micropumping of liquid by directional growth and selective venting of gas bubbles. Lab on a Chip 8,10. Meng, D. D., J. Kim and C.-J. Kim. 2006. A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices. Journal of Micromechanics and Microengineering 16,419. Morgenthaler, S., S. Lee, S. Zurcher and N. D. Spencer. 2003. A Simple, Reproducible Approach to the Preparation of Surface-Chemical Gradients. Langmuir 19,10459-10462. Paust, N., S. Krumbholz, S. Munt, C. Muller, P. Koltay, R. Zengerle and C. Ziegler. 2009. Self-regulating passive fuel supply for small direct methanol fuel cells operating in all orientations. Journal of Power Sources 192,442-450. Peng, K., J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee and J. Zhu. 2006. Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles. Advanced Functional Materials 16,387-394. Peng, K., A. Lu, R. Zhang and S.-T. Lee. 2008. Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching. Advanced Functional Materials 18,3026-3035. Peng, K., X. Wang and S.-T. Lee. 2008. Silicon nanowire array photoelectrochemical solar cells. Applied Physics Letters 92:163103-163103. Peng, K., Y. Wu, H. Fang, X. Zhong, Y. Xu and J. Zhu. 2005. Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays. Angewandte Chemie International Edition 44,2737-2742. Peng, K. Q., J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee and J. Zhu. 2006. Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles. Advanced Functional Materials 16,387-394. Qiu, T., X. Wu, G. Siu and P. Chu. 2006. Intergrowth mechanism of silicon nanowires and silver dendrites. Journal of Electronic Materials 35,1879-1884. Quere, D., A. Lafuma and J. Bico. 2003. Slippy and sticky microtextured solids. Nanotechnology 14,1109. Ryan, W. L. and E. A. Hemmingsen. 1993. Bubble Formation in Water at Smooth Hydrophobic Surfaces. Journal of Colloid and Interface Science 157,312-317. Ryan, W. L. and E. A. Hemmingsen. 1998. Bubble Formation at Porous Hydrophobic Surfaces. Journal of Colloid and Interface Science 197,101-107. Shalek, A. K., J. T. Robinson, E. S. Karp, J. S. Lee, D.-R. Ahn, M.-H. Yoon, A. Sutton, M. Jorgolli, R. S. Gertner, T. S. Gujral, G. MacBeath, E. G. Yang and H. Park. 2010. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences Shin, D. H., S. H. Lee, J.-Y. Jung and J. Y. Yoo. 2009. Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectronic Engineering 86,1350-1353. Shiu, S.-C., S.-B. Lin, S.-C. Hung and C.-F. Lin. 2011. Influence of pre-surface treatment on the morphology of silicon nanowires fabricated by metal-assisted etching. Applied Surface Science 257,1829-1834. Sun, C., X.-W. Zhao, Y.-H. Han and Z.-Z. Gu. 2008. Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment. Thin Solid Films 516,4059-4063. Sung, J. and M. Shuler. 2009. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdevices 11,731-738. Tas, N. R., J. W. Berenschot, T. S. J. Lammerink, M. Elwenspoek and A. van den Berg. 2002. Nanofluidic Bubble Pump Using Surface Tension Directed Gas Injection. Analytical Chemistry 74,2224-2227. Tong, W., A. Bar-Cohen, T. W. Simon and S. M. You. 1990. Contact angle effects on boiling incipience of highly-wetting liquids. International Journal of Heat and Mass Transfer 33,91-103. Tsai, P., R. G. H. Lammertink, M. Wessling and D. Lohse. 2010. Evaporation-Triggered Wetting Transition for Water Droplets upon Hydrophobic Microstructures. Physical Review Letters 104,116102. Ueda-Yukoshi, T. and T. Matsuda. 1995. Cellular Responses on a Wettability Gradient Surface with Continuous Variations in Surface Compositions of Carbonate and Hydroxyl Groups. Langmuir 11,4135-4140. Wagner, P., R. Furstner, W. Barthlott and C. Neinhuis. 2003. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. Journal of Experimental Botany 54,1295-1303. Wang, L., B. Peng and Z. Su. 2010. Tunable Wettability and Rewritable Wettability Gradient from Superhydrophilicity to Superhydrophobicity. Langmuir 26,12203-12208. Wenzel, R. N. 1936. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry 28,988-994. Wong, C. W., T. S. Zhao, Q. Ye and J. G. Liu. 2005. Transient capillary blocking in the flow field of a micro-DMFC and its effect on cell performance. Journal of the Electrochemical Society 152,A1600-A1605. Xi, J. and L. Jiang. 2008. Biomimic Superhydrophobic Surface with High Adhesive Forces. Industrial & Engineering Chemistry Research 47,6354-6357. Xu, J., R. Vaillant and D. Attinger. 2010. Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria. Microfluid Nanofluid 9,765-772. Yang, Y., C. Li, C.-Y. Kao and S. Osher. 2010. Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image Segmentation. In 'Advances in Visual Computing', ed. G. Bebis, R. Boyle, B. Parvin, D. Koracin, R. Chung, R. Hammound, M. Hussain, T. Kar-Han, R. Crawfis, D. Thalmann, D. Kao and L. Avila, 117-128. Springer Berlin Heidelberg. Yao, Z., Y.-W. Lu and S. G. Kandlikar. 2012. Fabrication of nanowires on orthogonal surfaces of microchannels and their effect on pool boiling. Journal of Micromechanics and Microengineering 22,115005. Yao, Z., Y. W. Lu and S. G. Kandlikar. 2011. Effects of nanowire height on pool boiling performance of water on silicon chips. International Journal of Thermal Sciences 50,2084-2090. Ye, Q., T. S. Zhao, H. Yang and J. Prabhuram 2005. Electrochemical Reactions in a DMFC under Open-Circuit Conditions. Electrochemical and Solid-State Letters 8,A52-A54. Young, T. 1805. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London 95,65-87. Yu, X., Z. Wang, Y. Jiang and X. Zhang. 2006. Surface Gradient Material: From Superhydrophobicity to Superhydrophilicity. Langmuir 22,4483-4486. Zhai, L., M. C. Berg, F. C. Cebeci, Y. Kim, J. M. Milwid, M. F. Rubner and R. E. Cohen. 2006. Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle. Nano Letters 6,1213-1217. Zhang, J., L. Xue and Y. Han. 2004. Fabrication Gradient Surfaces by Changing Polystyrene Microsphere Topography. Langmuir 21,5-8. Zhang, M.-L., K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee and N.-B. Wong. 2008. Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching. The Journal of Physical Chemistry C 112,4444-4450. Zorba, V., E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis and C. Fotakis. 2008. Biomimetic Artificial Surfaces Quantitatively Reproduce the Water Repellency of a Lotus Leaf. Advanced Materials 20,4049-4054. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17134 | - |
| dc.description.abstract | 本論文第一部份將介紹以簡單製程技術製備梯度濕潤性奈米結構表面:利用金屬催化化學蝕刻製程藉由氧化還原反應的機制製備矽奈米結構表面,因此隨著蝕刻時間不同,不同密度分布的奈米結構可於同一表面上被表現。藉由掃描式電子顯微鏡所拍攝的影像與影像分析軟體Image J與數值分析法的觀察與實驗結果得知在同一表面上隨著觀察的位置距離增加(蝕刻時間增加),奈米結構的密度也隨之遞減。接著藉由接觸角的量測實驗得知在一連續位置的奈米結構表面上液珠具有不同的接觸角且呈現遞增的趨勢。再者,藉由影像處理中每一分析位置點的奈米結構圖所得到的面積碎度與所量測的接觸角趨勢做比較可得知表面潤濕性與表面型態具相關性:表面疏水性隨著表面碎度減少而增加,且存在著適當的表面型態以呈現最佳的疏水性。最後藉由Cassie-Baxter特性來討論實際液珠在結構上的潤濕情形,由結果可得知奈米結構的型態將影響實際液珠的表現特性。
論文第二部份將探討矽奈米結構於氣泡捕捉與排氣之應用。首先將觀察不同表面型態對氣泡的捕捉能力,由實驗結果得知氣泡容易貼附於奈米結構表面且不易脫離。接著,利用氫氧化鉀蝕刻技術在矽晶片上製作凹槽開孔作為排氣孔,並比較平滑表面與奈米結構表面之排氣孔的排氣效能。實驗結果顯示在兩種不同排氣孔表面的晶片上,氣泡會出現一般情形:氣泡成長至適當大小並與排氣孔斜角接觸,氣泡被捕捉於排氣孔側壁,在排氣孔側壁與其他氣泡結合至氣泡大小與排氣端接觸,最後進行排氣步驟。藉由量化單科氣泡的排氣過程可發現具奈米結構的排氣孔可提供氣泡貼附點,促使氣泡更容易被捕捉於排氣孔進而縮短排氣過程的時間。 藉由以上實驗結果顯示,本論文提供一簡單製程技術成功製備具梯度濕潤性之奈米結構,藉由梯度濕潤性的特性,此表面將可利用於微流體系統與基本生物研究領域。另外藉由奈米結構於氣泡之捕捉與排氣之研究,具奈米結構之排氣孔可有效促進排氣過程,此特性除可以用於基本生物研究外也可應用於燃料電池中以提升能量效能的運用。 | zh_TW |
| dc.description.abstract | This thesis first studied the fabrication of gradient wettability nanostructure surface. The nanostructure surface was fabricated by using Ag-assisted chemical etching process; meanwhile, based on the mechenism of redox reaction of etching process, the nanostructures with different morphologies on a chip would be prepared. the distribution of nanostructure was decreased along continuous positions on a chip that have been observed and investigated from series SEM images and different image process. Therefore, the wettablity of the nanaostructure was examined and the results were indicated that the contact angle was varied along the continuous positions from 90 degree to 130 degree in a distace of 18mm. The wettability was varied with the distribution of nanostructure have been shown by comparing the area fraction of nanostructure which analyzed by Image J and math counting and contact angle of water droplet at investigated positions; moreover, the wetting behavior of droplet on nanostructure was investigated by using Cassie-Baxter regime. After all, the gradient wettability nanostructure surface on a chip have been sucessively fabricated.
The second part of thesis futer introduced silicon nanostructures on bubble trapping and degassing. First, the bubble trapping capabillity at different surfaces was examined and the reslts were indicated that the chemically generated bubbles could be easily trapped on heterogeneous nanostructure surface; moreover, bubble easily nucleated on the nanostructure surface also been observed. Secondly, A silicon chip which was executed with KOH etching process to produce concave holes have been introduced to the degassing test; moreover, the effects of two different morphologies of degassing holes include smooth and nanostructure surface would be investigated. Generally, in both of different type of degassing chip the behavior of generated bubbles would grow, aggregate with other bubbles, and be transported and trapped into the degassing hole, and then be degassing. moreover, the results were indecated that because the nanostrucure surface provide bubble perferable locations to attach, the degassing holes with nanostructure surface would advance the bubble trapping process and degassing process. Based on the results of experiments, the gradient wettability nanostructure surface has potential to apply in microfluidic systems and fundamental biological investigations; on the other hand, the nanostructured degassing chip could be used not oly for biological applications, but also for advancing the power efficiency of methanol fuel cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:57:48Z (GMT). No. of bitstreams: 1 ntu-102-R00631004-1.pdf: 3970776 bytes, checksum: 3cbf9efa1def9a13b336c706ec712fb4 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 ………………………………………………………………………………i
摘要 ……………………………………………………………………………...ii Abstract ……………………………………………………………………………..iv List of Contents vi List of Figures viii Chapter 1 Introduction 1 Chapter 2 Fundamental knowledge of Textured Surfaces 3 2.1 Functions and Effects of Textured Surfaces 3 2.2 Mechanism of Textured Surfaces on Wettability 4 2.2.1 Wettability of Solid Surfaces 4 2.2.2 Influence of Textured Surfaces on Wettability 6 2.2.3 Contact Angle Hysteresis 8 2.2.4 The Importance and Effects of artificial textured surfaces on wettability 9 2.3 Silicon Nanostructure 11 2.3.1 Importance of Silicon Nanostructures 11 2.3.2 Mechanism of Metal Assisted Chemical Etching and Formation of Silicon Nanostructure in Si/AgNO3/HF system 12 Chapter 3 Gradient Wettability Surface with Nanostructures 16 3.1 Importance and Effects of Gradient Wettability 16 3.2 Experiments 18 3.2.1 Fabrication of Gradient Wettability Silicon Nanostructure 18 3.2.2 Image Analysis of Silicon Nanostructure 19 3.2.3 Measurement of Wettability 21 3.3 Results and Discussions 23 3.3.1 Morphology of Silicon Nanostructure Surface 23 3.3.2 Length of Nanostructures 26 3.3.3 Image Analysis of Morphology of Silicon Nanostructure 27 3.3.4 Wettability of Silicon Nanostructure 30 Chapter 4 Application of Nanostructure on Bubble Trapping and Degassing 37 4.1 Backgrounds 37 4.1.1 Importance of the Degassing function 37 4.1.2 Bubble Nucleation and Trapping ability on the Nanostructured Surface 40 4.2 Experiments 44 4.2.1 Bubble Trapping Capability on Nanostructure Surface 44 4.2.2 Design and Mechanism of Degassing Holes 46 4.2.3 Fabrication of Degassing Chips 47 4.2.4 Setup of Degassing Experiments 49 4.3 Results and Discussions 51 4.3.1 Bubble Trapping Capability 51 4.3.2 Morphology of Degassing Chip and Degassing Holes 53 4.3.3 Influence of Morphology of Degassing Hole on Bubble Removal Capability 54 4.3.4 Quantification of Bubble Removing Process 61 Chapter 5 Conclusions 66 References 68 | |
| dc.language.iso | en | |
| dc.subject | 氣泡排除現象 | zh_TW |
| dc.subject | 矽奈米結構 | zh_TW |
| dc.subject | 梯度濕潤性 | zh_TW |
| dc.subject | 氣泡成核現象 | zh_TW |
| dc.subject | 氣泡捕捉現象 | zh_TW |
| dc.subject | silicon nanostructure | en |
| dc.subject | bubble degassing | en |
| dc.subject | bubble trapping | en |
| dc.subject | bubble nucleation | en |
| dc.subject | gradient wettability | en |
| dc.title | 梯度奈米結構製備與奈米結構於氣泡捕捉與排氣之應用 | zh_TW |
| dc.title | Fabrication of Gradient Nanostructure and Application of Nanostructure on Bubble Trapping and Degassing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 饒達仁,廖英志,艾群 | |
| dc.subject.keyword | 矽奈米結構,梯度濕潤性,氣泡成核現象,氣泡捕捉現象,氣泡排除現象, | zh_TW |
| dc.subject.keyword | silicon nanostructure,gradient wettability,bubble nucleation,bubble trapping,bubble degassing, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
