Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17129
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周瑞仁
dc.contributor.authorMing-Hong Hsiehen
dc.contributor.author謝明宏zh_TW
dc.date.accessioned2021-06-07T23:57:35Z-
dc.date.copyright2019-05-31
dc.date.issued2013
dc.date.submitted2013-08-19
dc.identifier.citationÅström, K. J., R. E. Klein and A. Lennartsson 2005. 'Bicycle dynamics and control.' IEEE Control Systems Magazine 25(4): 26-47.
Chen, M.-S., C.-H. Chen and F.-Y. Yang 2007. 'An LTR-observer-based dynamic sliding mode control for chattering reduction.' Automatica 43(6): 1111-1116.
Defoort, M. and T. Murakami 2009. 'Sliding-mode control scheme for an intelligent bicycle.' IEEE Transactions on Industrial Electronics 56(9): 3357-3368.
Getz, N. H. and J. E. Marsden. 1995. 'Control for an autonomous bicycle.' IEEE International Conference on Robotics and Automation, pp. 1397-1402. Nagoya, Japan.
Keo, L. and M. Yamakita. 2009. 'Controlling balancer and steering for bicycle stabilization.' IEEE International Conference on Intelligent Robots and Systems pp. 4541-4546. St. Louis, U.S.A.
Keo, L. and M. Yamakita 2011. 'Control of an autonomous electric bicycle with both steering and balancer controls.' Advanced Robotics 25(1-2): 1-22.
Keo, L., K. Yoshino, M. Kawaguchi and M. Yamakita. 2011. 'Experimental results for stabilizing of a bicycle with a flywheel balancer.' IEEE International Conference on Robotics and Automation pp. 6150-6155. Shanghai, China.
Lam, P. Y. 2011. 'Gyroscopic stabilization of a kid-size bicycle.' IEEE International Conference on Cybernetics and Intelligent Systems pp. 247-252. Qingdao, China
Limebeer, D. J. N. and R. S. Sharp 2006. 'Bicycles, motorcycles, and models - single-track vehicle modeling and control.' IEEE Control Systems Magazine 26(5): 34-61.
Murayama, A. and M. Yamakita. 2007. 'Development of autonomous bike robot with balancer.' Procceedings of 2007 SICE Annual Conference (SICE), pp. 1048-1052. Takamatsu, Japan.
Sharp, R. S. 1971. 'The stability and control of motorcycles.' Mechanical Engineering Science 13(5): 316-329.
Slotine, J. J. and S. S. Sastry. 1983. 'Tracking control of non-linear systems using sliding surfaces with application to robot manipulators.' IEEE International Conference on American Control Conference, pp. 132-135. San Francisco, CA, USA.
Tanaka, Y. and T. Murakami. 2004. 'Self sustaining bicycle robot with steering controller.' IEEE International Conference on Advanced Motion Control, pp. 193-197. Kawasaki, Japan.
Thanh, B. T. and M. Parnichkun 2008. 'Balancing control of bicyrobo by particle swarm optimization-based structure-specified mixed H2/H∞ control.' International Journal of Advanced Robotic Systems 5(4): 395-402.
Young, K. D., V. I. Utkin and U. Ozguner 1999. 'A control engineer's guide to sliding mode control.' IEEE Transactions on Control Systems Technology 7(3): 328-342.
方玫文 2012. 應用零力矩點追蹤法於自動導引自行車之平衡控制. 碩士論文, 台灣大學生物產業機電工程學系。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17129-
dc.description.abstract本論文旨在發展自動導引自行車系統,並結合陀螺儀平衡器的穩定性與龍頭控制的機動性,設計滑動模式控制器 (Sliding-mode control, SMC) 與模糊滑動模式控制器 (Fuzzy sliding-mode control, FSMC) 於自動導引自行車之平衡控制。本研究系統包含四個主要部分:自行車平台、陀螺儀平衡器、自行車姿態量測與主控制系統。自行車系統先接收姿態量測資料,並將自行車之傾斜角與角速度回授輸入至自行車上控制器中進行計算,給予龍頭、陀螺儀平衡器與自行車驅動馬達輸入命令,藉由此三個控制變數來達到自行車的穩定平衡。
本研究利用Lagrange方程式推導陀螺儀平衡器之動力學模型結合自行車動力模型,並利用PID控制、滑動模式控制與模糊滑動模式控制等理論來設計控制器,該平衡器可產生陀螺儀效應,藉此產生抵抗自行車傾倒之反力矩。滑動模式控制的設計對於干擾與模型誤差,具有高度的強健性。模糊滑動控制具有提升系統強健性與控制器設計簡單的優點,滑動平面增加了受控系統的強健性,而模糊邏輯利用經驗法則可大幅降低設計的複雜度,因此兩種方法都極適用於自行車此種不穩定系統維持穩定。
在模擬中利用上述三種控制器來模擬自行車在具有初始傾斜角、突起地磚與坑洞干擾等三種情況的系統表現。模擬結果可發現三種控制器都可使自行車達成穩定,而SMC與FSMC對於外界干擾具有較佳系統表現。實驗中利用零速度實驗測試自行車平衡穩定性,衝擊實驗利用2公升水瓶落下撞擊自行車,給予突然的外界干擾測試系統強健性。零速度實驗結果中,PID可維持自行車平衡12秒,SMC可維持自行車平衡20秒,而FSMC則可使自行車持續維持穩定而不傾倒,證明FSMC控制器相較其他兩者的優越性。衝擊實驗結果中,FSMC控制器在自行車系統受到劇烈撞擊後仍可維持自行車平衡,證明本研究提出之FSMC控制器有較佳的抗干擾強健性與系統穩定性。未來規劃為基於龍頭控制與陀螺儀平衡器的權重調整,實現自行車系統的路徑規劃。
zh_TW
dc.description.abstractThis research aims to develop a self-riding bicycle that achieves stability and maneuverability through gyroscopic balancer and steering control. And, we incorporate sliding mode control (SMC) and fuzzy sliding mode control (FSMC) into the controller to enhance the stability of the bicycle. The bicycle system contains four parts: bicycle platform, gyroscopic balancer, control system, and initial measurement unit (IMU) for acquiring posture information. When the self-riding bicycle system receives data from IMU, the micro-controller would generate appropriate command for steering mechanism, gyroscopic balancer, and driving motor of the bicycle based on lean angle and rate of lean angle of the bicycle system.
The dynamic model of the self-riding bicycle system with the gyroscopic balancer and bicycle is derived by Lagrange equation, and then it is employed in the design of PID control, sliding-mode control and fuzzy sliding-mode control. Moreover, the gyroscopic balancer can produce a torque by gyroscopic precession to overcome the leaning of the bicycle. The sliding-mode control strategy has high robustness in the situation with unknown uncertainties due to model error or disturbances. The fuzzy sliding-mode control has even more advantages on improving the robustness of control system and making design easier. The sliding surface design improves the robustness of control system, and the fuzzy logic design which is constructed by human experience decreases the complexity of controller design. Therefore, these two methods would be appropriate for stabilizing a statically unstable system like bicycles.
The simulations are carried out for the comparison of PID controller, SMC controller, and FSMC controller with initial lean angle, uneven brick disturbance or pothole disturbance on the bicycle. The simulation results show that three controllers can stabilize the bicycle, and SMC controller and FSMC controller have the better performance under external disturbance. In field test, the bicycle with zero velocity and impact disturbance is tested for evaluating the stability and robustness. 2-liter bottle is falling to give the bicycle sudden external disturbances. The experiment results show that the PID controller can stabilize the bicycle up to 12 seconds, the SMC controller up to 20 seconds, and the FSMC controller can sustain the bicycle without falling down. Therefore, the FSMC controller is better than the other two. The FSMC controller is also proved to be more robust under the impact. In the future work, the path tracking of the bicycle system will be implemented by further weighting adjustment between steering control and gyroscopic balancer.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:57:35Z (GMT). No. of bitstreams: 1
ntu-102-R00631011-1.pdf: 4619549 bytes, checksum: ada4fb132d51b4c37b7ddd82edd2d900 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
摘要 iii
Abstract v
目錄Table of Contents vii
圖目錄List of Figures ix
表目錄List of Tables xii
Chapter 1 緒論 Introduction 1
Chapter 2 文獻探討 Literature Review 4
2.1 自動導引自行車系統 (Self-riding bicycle system) 4
2.2 自行車動力學模型 (Dynamic model for bicycle) 8
2.3 滑動模式控制 (Sliding-mode control) 10
Chapter 3 材料與方法 Materials and Methods 12
3.1自行車系統架構 (System structure) 13
3.1.1 自行車平台 (Bicycle platform) 14
3.1.2 陀螺儀平衡器 (Gyroscopic balancer) 18
3.1.3 自行車姿態量測 (Inertial measurement) 21
3.1.4 主控制系統 (Control system) 22
3.2 控制策略 (Control strategy) 28
3.2.1 自行車動力學模型 (Dynamic model for bicycle) 29
3.2.2 滑動模式控制 (Sliding mode control, SMC) 35
3.2.3 模糊滑動控制 (Fuzzy sliding mode control, FSMC) 43
3.2.4 慣性量測單元訊號融合 (IMU sensor fusion ) 50
3.3 軟體設計 (Software design) 52
3.3.1 開發環境 (Development environment) 52
3.3.2 程式結構 (Program structure) 56
Chapter 4 結果與討論 Results and Discussion 58
4.1 模擬 (Simulation) 58
4.2 實驗 (Experiment) 74
4.2.1 慣性量測單元測試實驗 (IMU experiment) 74
4.2.2 自行車穩定性測試實驗 (Self-riding bicycle experiment) 78
Chapter 5 結論 Conclusions 80
References 81
dc.language.isozh-TW
dc.subjectPID控制zh_TW
dc.subject微控制器zh_TW
dc.subject陀螺儀平衡器zh_TW
dc.subject模糊模式控制zh_TW
dc.subject滑動模式控制zh_TW
dc.subject自動導引自行車zh_TW
dc.subjectsliding mode control (SMC)en
dc.subjectPID controlen
dc.subjectgyroscopic balanceren
dc.subjectfuzzy sliding mode control (FSMC)en
dc.subjectSelf-riding bicycleen
dc.subjectmicrocontrolleren
dc.title應用滑模控制策略於自動導引自行車之平衡控制zh_TW
dc.titleControl of Self-riding Bicycle System
with Sliding Mode Control
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃緒哲,顏炳郎
dc.subject.keyword自動導引自行車,PID控制,滑動模式控制,模糊模式控制,陀螺儀平衡器,微控制器,zh_TW
dc.subject.keywordSelf-riding bicycle,PID control,sliding mode control (SMC),fuzzy sliding mode control (FSMC),gyroscopic balancer,microcontroller,en
dc.relation.page83
dc.rights.note未授權
dc.date.accepted2013-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved