Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17127
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于明暉(Ming-Whei Yu)
dc.contributor.authorChi-Jung Huangen
dc.contributor.author黃杞蓉zh_TW
dc.date.accessioned2021-06-07T23:57:31Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-19
dc.identifier.citation1. Wu CF, Yu MW, Lin CL, et al. Long-term tracking of hepatitis B viral load and the relationship with risk for hepatocellular carcinoma in men. Carcinogenesis 2008;29(1):106-12.
2. Chao LT, Wu CF, Sung FY, et al. Insulin, glucose and hepatocellular carcinoma risk in male hepatitis B carriers: results from 17-year follow-up of a population-based cohort. Carcinogenesis 2011;32(6):876-81.
3. Sung FY, Jung CM, Wu CF, et al. Hepatitis B virus core variants modify natural course of viral infection and hepatocellular carcinoma progression. Gastroenterology 2009;137(5):1687-97.
4. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004;11(2):97-107.
5. Merican I, Guan R, Amarapuka D, et al. Chronic hepatitis B virus infection in Asian countries. J Gastroenterol Hepatol 2000;15(12):1356-61.
6. Chen CJ, Wang LY, Yu MW. Epidemiology of hepatitis B virus infection in the Asia-Pacific region. J Gastroenterol Hepatol 2000;15 Suppl:E3-6.
7. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin 2005;55(2):74-108.
8. Perz JF, Armstrong GL, Farrington LA, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006;45(4):529-38.
9. Fattovich G, Stroffolini T, Zagni I, et al. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004;127(5 Suppl 1):S35-50.
10. Yu MW, Chen CJ. Hepatitis B and C viruses in the development of hepatocellular carcinoma. Crit Rev Oncol Hematol 1994;17(2):71-91.
11. Locarnini S. Molecular virology of hepatitis B virus. Semin Liver Dis 2004;24 Suppl 1:3-10.
12. Kramvis A, Kew MC. Relationship of genotypes of hepatitis B virus to mutations, disease progression and response to antiviral therapy. J Viral Hepat 2005;12(5):456-64.
13. Okamoto H, Tsuda F, Sakugawa H, et al. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J Gen Virol 1988;69 ( Pt 10):2575-83.
14. Jazayeri SM, Alavian SM, Carman WF. Hepatitis B virus: origin and evolution. J Viral Hepat 2010;17(4):229-35.
15. Schaefer S. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World J Gastroenterol 2007;13(1):14-21.
16. Chan HL, Hui AY, Wong ML, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut 2004;53(10):1494-8.
17. Kao JH, Chen PJ, Lai MY, et al. Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 2000;118(3):554-9.
18. Kao JH, Chen PJ, Lai MY, et al. Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carriers. Gastroenterology 2003;124(2):327-34.
19. Kao JH, Liu CJ, Chen DS. Hepatitis B viral genotypes and lamivudine resistance. J Hepatol 2002;36(2):303-4.
20. Kao JH, Wu NH, Chen PJ, et al. Hepatitis B genotypes and the response to interferon therapy. J Hepatol 2000;33(6):998-1002.
21. Orito E, Ichida T, Sakugawa H, et al. Geographic distribution of hepatitis B virus (HBV) genotype in patients with chronic HBV infection in Japan. Hepatology 2001;34(3):590-4.
22. Sumi H, Yokosuka O, Seki N, et al. Influence of hepatitis B virus genotypes on the progression of chronic type B liver disease. Hepatology 2003;37(1):19-26.
23. Yang HI, Yeh SH, Chen PJ, et al. Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst 2008;100(16):1134-43.
24. Yu MW, Yeh SH, Chen PJ, et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 2005;97(4):265-72.
25. Sugauchi F, Orito E, Ichida T, et al. Epidemiologic and virologic characteristics of hepatitis B virus genotype B having the recombination with genotype C. Gastroenterology 2003;124(4):925-32.
26. Kobayashi M, Suzuki F, Akuta N, et al. Virological differences between patients infected with subtypes Ba and Bj of hepatitis B virus genotype B. J Gastroenterol Hepatol 2005;20(4):570-6.
27. Tanaka Y, Mukaide M, Orito E, et al. Specific mutations in enhancer II/core promoter of hepatitis B virus subgenotypes C1/C2 increase the risk of hepatocellular carcinoma. J Hepatol 2006;45(5):646-53.
28. Chan HL, Tse CH, Mo F, et al. High viral load and hepatitis B virus subgenotype ce are associated with increased risk of hepatocellular carcinoma. J Clin Oncol 2008;26(2):177-82.
29. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28(10):2731-9.
30. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006;23(2):254-67.
31. Lole KS, Bollinger RC, Paranjape RS, et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 1999;73(1):152-60.
32. Kao JH, Chen DS. Clinical relevance of hepatitis B virus genotypes Ba and Bj in Taiwan. Gastroenterology 2003;125(6):1916-7; author reply 1917-8.
33. Tseng TC, Liu CJ, Chen PJ, et al. Subgenotypes of hepatitis B virus genotype C do not correlate with disease progression of chronic hepatitis B in Taiwan. Liver Int 2007;27(7):983-8.
34. Kay A, Zoulim F. Hepatitis B virus genetic variability and evolution. Virus Res 2007;127(2):164-76.
35. Olinger CM, Jutavijittum P, Hubschen JM, et al. Possible new hepatitis B virus genotype, southeast Asia. Emerg Infect Dis 2008;14(11):1777-80.
36. Tran TT, Trinh TN, Abe K. New complex recombinant genotype of hepatitis B virus identified in Vietnam. J Virol 2008;82(11):5657-63.
37. Tatematsu K, Tanaka Y, Kurbanov F, et al. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J Virol 2009;83(20):10538-47.
38. Sugauchi F, Orito E, Ichida T, et al. Hepatitis B virus of genotype B with or without recombination with genotype C over the precore region plus the core gene. J Virol 2002;76(12):5985-92.
39. Liu CJ, Kao JH. Global perspective on the natural history of chronic hepatitis B: role of hepatitis B virus genotypes a to j. Semin Liver Dis 2013;33(2):97-102.
40. Fattovich G. Natural history and prognosis of hepatitis B. Semin Liver Dis 2003;23(1):47-58.
41. Chang JJ, Lewin SR. Immunopathogenesis of hepatitis B virus infection. Immunol Cell Biol 2007;85(1):16-23.
42. Rehermann B. Immune responses in hepatitis B virus infection. Semin Liver Dis 2003;23(1):21-38.
43. Rehermann B, Lau D, Hoofnagle JH, et al. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest 1996;97(7):1655-65.
44. Boni C, Fisicaro P, Valdatta C, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 2007;81(8):4215-25.
45. Fisicaro P, Valdatta C, Massari M, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 2010;138(2):682-93, 693 e1-4.
46. Peng G, Li S, Wu W, et al. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol 2008;45(4):963-70.
47. Hannoun C, Horal P, Lindh M. Long-term mutation rates in the hepatitis B virus genome. J Gen Virol 2000;81(Pt 1):75-83.
48. Lim SG, Cheng Y, Guindon S, et al. Viral quasi-species evolution during hepatitis Be antigen seroconversion. Gastroenterology 2007;133(3):951-8.
49. Wu S, Imazeki F, Kurbanov F, et al. Evolution of hepatitis B genotype C viral quasi-species during hepatitis B e antigen seroconversion. J Hepatol 2011;54(1):19-25.
50. Wang HY, Chien MH, Huang HP, et al. Distinct hepatitis B virus dynamics in the immunotolerant and early immunoclearance phases. J Virol 2010;84(7):3454-63.
51. Bozkaya H, Akarca US, Ayola B, et al. High degree of conservation in the hepatitis B virus core gene during the immune tolerant phase in perinatally acquired chronic hepatitis B virus infection. J Hepatol 1997;26(3):508-16.
52. Bozkaya H, Ayola B, Lok AS. High rate of mutations in the hepatitis B core gene during the immune clearance phase of chronic hepatitis B virus infection. Hepatology 1996;24(1):32-7.
53. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8.
54. Delport W, Poon AF, Frost SD, et al. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010;26(19):2455-7.
55. Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J Hepatol 2008;48(2):335-52.
56. Yuen MF, Yuan HJ, Hui CK, et al. A large population study of spontaneous HBeAg seroconversion and acute exacerbation of chronic hepatitis B infection: implications for antiviral therapy. Gut 2003;52(3):416-9.
57. Okamoto H, Imai M, Kametani M, et al. Genomic heterogeneity of hepatitis B virus in a 54-year-old woman who contracted the infection through materno-fetal transmission. Jpn J Exp Med 1987;57(4):231-6.
58. Allen TM, Altfeld M, Geer SC, et al. Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol 2005;79(21):13239-49.
59. Rauch A, James I, Pfafferott K, et al. Divergent adaptation of hepatitis C virus genotypes 1 and 3 to human leukocyte antigen-restricted immune pressure. Hepatology 2009;50(4):1017-29.
60. Yuen MF, Wong DK, Zheng BJ, et al. Difference in T helper responses during hepatitis flares in hepatitis B e antigen (HBeAg)-positive patients with genotypes B and C: implication for early HBeAg seroconversion. J Viral Hepat 2007;14(4):269-75.
61. Osiowy C, Giles E, Tanaka Y, et al. Molecular evolution of hepatitis B virus over 25 years. J Virol 2006;80(21):10307-14.
62. Simmonds P. The origin and evolution of hepatitis viruses in humans. J Gen Virol 2001;82(Pt 4):693-712.
63. Gojobori T, Moriyama EN, Kimura M. Molecular clock of viral evolution, and the neutral theory. Proc Natl Acad Sci U S A 1990;87(24):10015-8.
64. Orito E, Mizokami M, Ina Y, et al. Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc Natl Acad Sci U S A 1989;86(18):7059-62.
65. Mizokami M, Orito E, Ohba K, et al. Constrained evolution with respect to gene overlap of hepatitis B virus. J Mol Evol 1997;44 Suppl 1:S83-90.
66. Chen BF, Liu CJ, Jow GM, et al. High prevalence and mapping of pre-S deletion in hepatitis B virus carriers with progressive liver diseases. Gastroenterology 2006;130(4):1153-68.
67. Stuyver LJ, Locarnini SA, Lok A, et al. Nomenclature for antiviral-resistant human hepatitis B virus mutations in the polymerase region. Hepatology 2001;33(3):751-7.
68. Torresi J. The virological and clinical significance of mutations in the overlapping envelope and polymerase genes of hepatitis B virus. J Clin Virol 2002;25(2):97-106.
69. Chen CJ, Chen DS. Interaction of hepatitis B virus, chemical carcinogen, and genetic susceptibility: multistage hepatocarcinogenesis with multifactorial etiology. Hepatology 2002;36(5):1046-9.
70. Chou YC, Yu MW, Wu CF, et al. Temporal relationship between hepatitis B virus enhancer II/basal core promoter sequence variation and risk of hepatocellular carcinoma. Gut 2008;57(1):91-7.
71. Yang HI, Lu SN, Liaw YF, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 2002;347(3):168-74.
72. Yu MW, Chang HC, Liaw YF, et al. Familial risk of hepatocellular carcinoma among chronic hepatitis B carriers and their relatives. J Natl Cancer Inst 2000;92(14):1159-64.
73. Yu MW, Shih WL, Lin CL, et al. Body-mass index and progression of hepatitis B: a population-based cohort study in men. J Clin Oncol 2008;26(34):5576-82.
74. Yu MW, Yang YC, Yang SY, et al. Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men. J Natl Cancer Inst 2001;93(21):1644-51.
75. Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006;295(1):65-73.
76. Chisari FV. Rous-Whipple Award Lecture. Viruses, immunity, and cancer: lessons from hepatitis B. Am J Pathol 2000;156(4):1117-32.
77. Brunetto MR, Giarin MM, Oliveri F, et al. Wild-type and e antigen-minus hepatitis B viruses and course of chronic hepatitis. Proc Natl Acad Sci U S A 1991;88(10):4186-90.
78. Buckwold VE, Xu Z, Chen M, et al. Effects of a naturally occurring mutation in the hepatitis B virus basal core promoter on precore gene expression and viral replication. J Virol 1996;70(9):5845-51.
79. Hamasaki K, Nakata K, Nagayama Y, et al. Changes in the prevalence of HBeAg-negative mutant hepatitis B virus during the course of chronic hepatitis B. Hepatology 1994;20(1 Pt 1):8-14.
80. Omata M, Ehata T, Yokosuka O, et al. Mutations in the precore region of hepatitis B virus DNA in patients with fulminant and severe hepatitis. N Engl J Med 1991;324(24):1699-704.
81. Sato S, Suzuki K, Akahane Y, et al. Hepatitis B virus strains with mutations in the core promoter in patients with fulminant hepatitis. Ann Intern Med 1995;122(4):241-8.
82. Okamoto H, Yotsumoto S, Akahane Y, et al. Hepatitis B viruses with precore region defects prevail in persistently infected hosts along with seroconversion to the antibody against e antigen. J Virol 1990;64(3):1298-303.
83. Carman WF, Jacyna MR, Hadziyannis S, et al. Mutation preventing formation of hepatitis B e antigen in patients with chronic hepatitis B infection. Lancet 1989;2(8663):588-91.
84. Gunther S, Piwon N, Will H. Wild-type levels of pregenomic RNA and replication but reduced pre-C RNA and e-antigen synthesis of hepatitis B virus with C(1653) --> T, A(1762) --> T and G(1764) --> A mutations in the core promoter. J Gen Virol 1998;79 ( Pt 2):375-80.
85. Hunt CM, McGill JM, Allen MI, et al. Clinical relevance of hepatitis B viral mutations. Hepatology 2000;31(5):1037-44.
86. Chen CH, Hung CH, Lee CM, et al. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology 2007;133(5):1466-74.
87. Bai X, Zhu Y, Jin Y, et al. Temporal acquisition of sequential mutations in the enhancer II and basal core promoter of HBV in individuals at high risk for hepatocellular carcinoma. Carcinogenesis 2011;32(1):63-8.
88. Yin J, Xie J, Liu S, et al. Association between the various mutations in viral core promoter region to different stages of hepatitis B, ranging of asymptomatic carrier state to hepatocellular carcinoma. Am J Gastroenterol 2011;106(1):81-92.
89. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol 1995;13:29-60.
90. Locarnini S, McMillan J, Bartholomeusz A. The hepatitis B virus and common mutants. Semin Liver Dis 2003;23(1):5-20.
91. Carman WF. The clinical significance of surface antigen variants of hepatitis B virus. J Viral Hepat 1997;4 Suppl 1:11-20.
92. Norder H, Hammas B, Lofdahl S, et al. Comparison of the amino acid sequences of nine different serotypes of hepatitis B surface antigen and genomic classification of the corresponding hepatitis B virus strains. J Gen Virol 1992;73 ( Pt 5):1201-8.
93. Waters JA, Kennedy M, Voet P, et al. Loss of the common 'A' determinant of hepatitis B surface antigen by a vaccine-induced escape mutant. J Clin Invest 1992;90(6):2543-7.
94. Ogura Y, Kurosaki M, Asahina Y, et al. Prevalence and significance of naturally occurring mutations in the surface and polymerase genes of hepatitis B virus. J Infect Dis 1999;180(5):1444-51.
95. Hou J, Wang Z, Cheng J, et al. Prevalence of naturally occurring surface gene variants of hepatitis B virus in nonimmunized surface antigen-negative Chinese carriers. Hepatology 2001;34(5):1027-34.
96. Melegari M, Scaglioni PP, Wands JR. The small envelope protein is required for secretion of a naturally occurring hepatitis B virus mutant with pre-S1 deleted. J Virol 1997;71(7):5449-54.
97. Xu Z, Yen TS. Intracellular retention of surface protein by a hepatitis B virus mutant that releases virion particles. J Virol 1996;70(1):133-40.
98. Fan YF, Lu CC, Chen WC, et al. Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 2001;33(1):277-86.
99. Wang HC, Huang W, Lai MD, et al. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 2006;97(8):683-8.
100. Liu S, Zhang H, Gu C, et al. Associations between hepatitis B virus mutations and the risk of hepatocellular carcinoma: a meta-analysis. J Natl Cancer Inst 2009;101(15):1066-82.
101. Sugauchi F, Ohno T, Orito E, et al. Influence of hepatitis B virus genotypes on the development of preS deletions and advanced liver disease. J Med Virol 2003;70(4):537-44.
102. Yeung P, Wong DK, Lai CL, et al. Association of hepatitis B virus pre-S deletions with the development of hepatocellular carcinoma in chronic hepatitis B. J Infect Dis 2011;203(5):646-54.
103. Lok AS, Zoulim F, Locarnini S, et al. Antiviral drug-resistant HBV: standardization of nomenclature and assays and recommendations for management. Hepatology 2007;46(1):254-65.
104. Lok AS, Lai CL, Leung N, et al. Long-term safety of lamivudine treatment in patients with chronic hepatitis B. Gastroenterology 2003;125(6):1714-22.
105. Delaney WEt, Yang H, Westland CE, et al. The hepatitis B virus polymerase mutation rtV173L is selected during lamivudine therapy and enhances viral replication in vitro. J Virol 2003;77(21):11833-41.
106. Ono SK, Kato N, Shiratori Y, et al. The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance. J Clin Invest 2001;107(4):449-55.
107. Torresi J, Earnest-Silveira L, Deliyannis G, et al. Reduced antigenicity of the hepatitis B virus HBsAg protein arising as a consequence of sequence changes in the overlapping polymerase gene that are selected by lamivudine therapy. Virology 2002;293(2):305-13.
108. Warner N, Locarnini S. The antiviral drug selected hepatitis B virus rtA181T/sW172* mutant has a dominant negative secretion defect and alters the typical profile of viral rebound. Hepatology 2008;48(1):88-98.
109. Chen L, Zhang Q, Yu DM, et al. Early changes of hepatitis B virus quasispecies during lamivudine treatment and the correlation with antiviral efficacy. J Hepatol 2009;50(5):895-905.
110. Liu F, Chen L, Yu DM, et al. Evolutionary patterns of hepatitis B virus quasispecies under different selective pressures: correlation with antiviral efficacy. Gut 2011;60(9):1269-77.
111. Whalley SA, Brown D, Webster GJ, et al. Evolution of hepatitis B virus during primary infection in humans: transient generation of cytotoxic T-cell mutants. Gastroenterology 2004;127(4):1131-8.
112. Parekh S, Zoulim F, Ahn SH, et al. Genome replication, virion secretion, and e antigen expression of naturally occurring hepatitis B virus core promoter mutants. J Virol 2003;77(12):6601-12.
113. Nattermann J, Tacke F. The structure behind diversity: covariance networks in hepatitis C virus sequences are associated with treatment response. Hepatology 2009;49(5):1767-9.
114. Oh TS, Rice CM. Predicting response to hepatitis C therapy. J Clin Invest 2009;119(1):5-7.
115. Strait BJ, Dewey TG. The Shannon information entropy of protein sequences. Biophys J 1996;71(1):148-55.
116. Huang HH, Shih WL, Li YH, et al. Hepatitis B viraemia: its heritability and association with common genetic variation in the interferon gamma signalling pathway. Gut 2011;60(1):99-107.
117. Hadziyannis SJ, Vassilopoulos D. Hepatitis B e antigen-negative chronic hepatitis B. Hepatology 2001;34(4 Pt 1):617-24.
118. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009;373(9663):582-92.
119. Maini MK, Boni C, Lee CK, et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med 2000;191(8):1269-80.
120. Chopera DR, Woodman Z, Mlisana K, et al. Transmission of HIV-1 CTL escape variants provides HLA-mismatched recipients with a survival advantage. PLoS Pathog 2008;4(3):e1000033.
121. Goepfert PA, Lumm W, Farmer P, et al. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. J Exp Med 2008;205(5):1009-17.
122. Salloum S, Oniangue-Ndza C, Neumann-Haefelin C, et al. Escape from HLA-B*08-restricted CD8 T cells by hepatitis C virus is associated with fitness costs. J Virol 2008;82(23):11803-12.
123. Tester I, Smyk-Pearson S, Wang P, et al. Immune evasion versus recovery after acute hepatitis C virus infection from a shared source. J Exp Med 2005;201(11):1725-31.
124. Desmond CP, Bartholomeusz A, Gaudieri S, et al. A systematic review of T-cell epitopes in hepatitis B virus: identification, genotypic variation and relevance to antiviral therapeutics. Antivir Ther 2008;13(2):161-75.
125. Volz T, Lutgehetmann M, Wachtler P, et al. Impaired intrahepatic hepatitis B virus productivity contributes to low viremia in most HBeAg-negative patients. Gastroenterology 2007;133(3):843-52.
126. Lai MJ, Wen SH, Lin YH, et al. Distributions of human leukocyte antigen-A, -B, and -DRB1 alleles and haplotypes based on 46,915 Taiwanese donors. Hum Immunol 2010;71(8):777-82.
127. Bertoletti A, Costanzo A, Chisari FV, et al. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 1994;180(3):933-43.
128. Bertoletti A, Sette A, Chisari FV, et al. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature 1994;369(6479):407-10.
129. Missale G, Redeker A, Person J, et al. HLA-A31- and HLA-Aw68-restricted cytotoxic T cell responses to a single hepatitis B virus nucleocapsid epitope during acute viral hepatitis. J Exp Med 1993;177(3):751-62.
130. Kim D, Lyoo KS, Smith D, et al. Number of mutations within CTL-defined epitopes of the hepatitis B Virus (HBV) core region is associated with HBV disease progression. J Med Virol 2011;83(12):2082-7.
131. Hsu YS, Chien RN, Yeh CT, et al. Long-term outcome after spontaneous HBeAg seroconversion in patients with chronic hepatitis B. Hepatology 2002;35(6):1522-7.
132. Liaw YF. HBeAg seroconversion as an important end point in the treatment of chronic hepatitis B. Hepatol Int 2009;3(3):425-33.
133. Lin SM, Yu ML, Lee CM, et al. Interferon therapy in HBeAg positive chronic hepatitis reduces progression to cirrhosis and hepatocellular carcinoma. J Hepatol 2007;46(1):45-52.
134. Ehata T, Omata M, Chuang WL, et al. Mutations in core nucleotide sequence of hepatitis B virus correlate with fulminant and severe hepatitis. J Clin Invest 1993;91(3):1206-13.
135. Okumura A, Takayanagi M, Aiyama T, et al. Serial analysis of hepatitis B virus core nucleotide sequence of patients with acute exacerbation during chronic infection. J Med Virol 1996;49(2):103-109.
136. Marinos G, Torre F, Gunther S, et al. Hepatitis B virus variants with core gene deletions in the evolution of chronic hepatitis B infection. Gastroenterology 1996;111(1):183-92.
137. Bertoletti A, Ferrari C, Fiaccadori F, et al. HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen. Proc Natl Acad Sci U S A 1991;88(23):10445-9.
138. Nayersina R, Fowler P, Guilhot S, et al. HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol 1993;150(10):4659-71.
139. Penna A, Chisari FV, Bertoletti A, et al. Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the hepatitis B virus nucleocapsid antigen. J Exp Med 1991;174(6):1565-70.
140. Rehermann B, Fowler P, Sidney J, et al. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med 1995;181(3):1047-58.
141. Kim HS, Kim HJ, Shin WG, et al. Predictive factors for early HBeAg seroconversion in acute exacerbation of patients with HBeAg-positive chronic hepatitis B. Gastroenterology 2009;136(2):505-12.
142. Chu CJ, Hussain M, Lok AS. Hepatitis B virus genotype B is associated with earlier HBeAg seroconversion compared with hepatitis B virus genotype C. Gastroenterology 2002;122(7):1756-62.
143. Kao JH, Chen PJ, Lai MY, et al. Hepatitis B virus genotypes and spontaneous hepatitis B e antigen seroconversion in Taiwanese hepatitis B carriers. J Med Virol 2004;72(3):363-9.
144. Yamaura T, Tanaka E, Matsumoto A, et al. A case-control study for early prediction of hepatitis B e antigen seroconversion by hepatitis B virus DNA levels and mutations in the precore region and core promoter. J Med Virol 2003;70(4):545-52.
145. Bertoletti A, Gehring AJ. The immune response during hepatitis B virus infection. J Gen Virol 2006;87(Pt 6):1439-49.
146. Maini MK, Bertoletti A. How can the cellular immune response control hepatitis B virus replication? J Viral Hepat 2000;7(5):321-6.
147. Neumann-Haefelin C, Timm J, Schmidt J, et al. Protective effect of human leukocyte antigen B27 in hepatitis C virus infection requires the presence of a genotype-specific immunodominant CD8+ T-cell epitope. Hepatology 2010;51(1):54-62.
148. Ziegler S, Ruhl M, Tenckhoff H, et al. Susceptibility to chronic hepatitis C virus infection is influenced by sequence differences in immunodominant CD8+ T cell epitopes. J Hepatol 2013;58(1):24-30.
149. Matthews PC, Koyanagi M, Kloverpris HN, et al. Differential clade-specific HLA-B*3501 association with HIV-1 disease outcome is linked to immunogenicity of a single Gag epitope. J Virol 2012;86(23):12643-54.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17127-
dc.description.abstractBackground
During chronic hepatitis B virus (HBV) infection, evolution of viral genome continues under immune selection pressure, and the occurrence of genetic diversity, including those specific mutations that facilitate viral adaptation, can impact viral replication and thereafter the host's susceptibility to hepatic disease progression. However, studies of HBV sequence divergence with relevance to evolution, viral replication activity, and disease pathogenesis have been limited.
Specific Aims
There are four distinct but complementary aims to understand HBV sequence variation in relation to viral evolutionary change during the natural course of chronic infection and subsequent risk for disease progression in persons chronically infected with HBV: (i) To conduct phylogenetic analysis of HBV based on sequencing of the polymerase gene across a region of 2403 bp in a population-based study; (ii) To describe change in HBV sequence diversity across the four phases (i.e., immune-tolerant, immune-clearance, non/low replicative, and HBeAg-negative hepatitis phases) of the natural history of HBV infection at the population level; (iii) To determine the associations with levels of viral sequence divergence and specific viral polymorphisms (or mutations) for long-term dynamics of viral load and the risk for transition from healthy HBV carrier state to hepatocellular carcinoma and/or liver cirrhosis; as well as (iv) To study the potential role of sequence variation in the T-cell epitopes of the HBV-polymerase region in HBeAg seroconversion and subsequent development of hepatocellular carcinoma and/or liver cirrhosis.
Subjects and Methods
We performed direct sequencing of the HBV-polymerase region in baseline plasma samples from 867 treatment-naïve individuals presenting plasma HBV-DNA levels at least 1000 copies/mL in a case-cohort study (n=1143) on the longitudinal analysis of HBV viral load embedded in a cohort study of 2903 male HBsAg-positive government employees, followed up from study entry in 1989-1992 through 2006. We used linear mix models to assess the influences of viral evolutionary parameters and single nucleotide polymorphisms (SNPs) on the longitudinal levels of viral load. Multiple logistic regression was used to evaluate the associations between viral SNPs and clinical outcomes.
Results: Phylogenetic tree analysis identified 5 distinct subgenotypes: Ba (80.0%), Ce (16.5%), Cs (1.2%), B3 (0.2%), and D (0.2%). Patterns of viral sequence diversity across the four phases of the natural history of HBV infection were similar between HBV subgenotypes Ba and Ce, despite of greater diversity observed for subgenotype Ce vs. Ba. There was a greater than 1.5-fold increase in the HBV-polymerase sequence diversity associated with HBeAg seroconversion, regardless of HBV subgenotype. Furthermore, levels of viral genetic divergence apart from the population consensus sequence, estimated by three viral evolutionary parameters (Kimura two-parameter distance, the number of synonymous substitutions per synonymous site, and the number of nonsynonymous substitutions per nonsynonymous site), were inversely associated with longitudinal levels of viral load in a dose-dependent manner even in HBeAg-negative subjects. Longitudinal analysis of each SNP in the entire sequence region identified 153 viral load-associated SNPs in overall and 136 in HBeAg-negative subjects, showing distinct profiles between HBV subgenotype Ba and Ce. These viral SNPs appeared to be most evident at sites within or flanking T-cell epitopes. Seven viral SNPs revealed associations with both enhanced viral load and a more than 4-fold increase in subsequent risks for hepatocellular carcinoma and/or liver cirrhosis. There is significant sequence variation in the T-cell epitopes between HBV genotypes. Polymorphisms in 96 (37 for genotype B alone, 16 for genotype C alone, and 43 for both genotype B and C) T-cell epitopes were significantly associated with HBeAg status, with higher frequencies of variant epitopes seen among HBeAg-negative relative to HBeAg-positive subjects. These associations remained even after adjustment for age.
Conclusions: Our study highlights the importance of change in virus-host interaction in the natural history during chronic HBV infection. Sequence variation occurring naturally in the HBV-polymerase region is associated with long-term dynamics of viral load and/or disease progression. Increased sequence diversity within certain T-cell eptopes may be accompanied by immune pressure during HBeAg seroconversion, thereby affecting the outcome of liver disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:57:31Z (GMT). No. of bitstreams: 1
ntu-102-D96842002-1.pdf: 3254848 bytes, checksum: 28fbab7bed052278dbfec2e32395c053 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………… i
誌謝…………………………………………………………………………………… ii
中文摘要…………………………...…………………………………………………. iii
英文摘要…………………………...…………………………………………………. v
第一章 前言………………………………………………………….……………... 1
第一節 研究動機………………………………………………...……………. 1
第二節 研究目的………………………………………………...……………. 1
第二章 共同材料與方法……………………………………………….…………... 3
第一節 研究世代…………………………………………………...…………. 3
第二節 長期病毒量資料………………………………………….…………... 3
第三節 實驗分析…………………………………………………...…………. 4
第三章 B型肝炎病毒聚合酶基因之親緣演化分析…………………..………….. 6
第一節 研究背景…………………………………...…………………………. 6
第二節 材料與方法………………………………………….………………... 7
第三節 結果…………………………………………………...……………… 8
第四節 討論………………………………………………...………………… 9
第四章 B型肝炎病毒之基因序列多樣性與慢性B型肝炎自然史……………... 15
第一節 研究背景……………………………………………………….……. 15
第二節 材料與方法……………………………………………......……….... 18
第三節 結果………………………………………………………………….. 19
第四節 討論………………………………………………………………….. 21
第五章 B型肝炎病毒之遺傳序列多樣性及單一核苷酸多形性對於長期病毒量
與肝臟疾病發展的影響…………………………………………………... 31
第一節 研究背景…………………………………………………………….. 31
第二節 材料與方法…………………………………………………………. 36
第三節 結果…………………………………………………………………. 37
第四節 討論…………………………………………………………………. 39
第六章 T細胞抗原決定位之序列變異與HBeAg血清轉換及肝臟疾病發展之
相關性分析……………………………………………………………….. 54
第一節 研究背景……………………………………………………………. 54
第二節 材料與方法………………………………………………………..... 56
第三節 結果…………………………………………………………………. 57
第四節 討論…………………………………………………………………. 60
第七章 研究限制…………………………………………………………………. 74
第八章 結論………………………………………………………………………. 75
參考文獻……………………………………………………….….………………... 76
附錄…………………………………………………………………………………. 87
dc.language.isozh-TW
dc.subject前瞻性研究zh_TW
dc.subjectB型肝炎zh_TW
dc.subject肝細胞癌zh_TW
dc.subject自然史zh_TW
dc.subject次基因型zh_TW
dc.subjectnatural historyen
dc.subjectprospective studyen
dc.subjectsubgenotypeen
dc.subjecthepatitis Ben
dc.subjecthepatocellular carcinomaen
dc.title免疫選擇和B型肝炎病毒聚合酶基因序列變異對長期病毒量及肝臟疾病發展之影響zh_TW
dc.titleImmune selection and genetic sequence variation in polymerase region of hepatitis B virus, dynamics of viral load, and disease progressionen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳保中,劉俊人,劉信孚,盧勝男
dc.subject.keywordB型肝炎,肝細胞癌,自然史,次基因型,前瞻性研究,zh_TW
dc.subject.keywordhepatitis B,hepatocellular carcinoma,natural history,subgenotype,prospective study,en
dc.relation.page89
dc.rights.note未授權
dc.date.accepted2013-08-19
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved