Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17110
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭大智(Ta-Chih Hsiao)
dc.contributor.authorChe-An Wuen
dc.contributor.author吳哲安zh_TW
dc.date.accessioned2021-06-07T23:56:53Z-
dc.date.copyright2020-08-12
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citationAllen, J., G. Oberdorster, K. Morris-Schaffer, C. Wong, C. Klocke, M. Sobolewski, K. Conrad, M. Mayer-Proschel, and D. Cory-Slechta (2017), Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders, Neurotoxicology, 59, 140-154.
Angah, O., and A. Y. Chen (2020), Tracking multiple construction workers through deep learning and the gradient based method with re-matching based on multi-object tracking accuracy, Automation in Construction, 119, 103308.
Boynard, A., A. Borbon, T. Leonardis, B. Barletta, S. Meinardi, D. R. Blake, and N. Locoge (2014), Spatial and seasonal variability of measured anthropogenic non-methane hydrocarbons in urban atmospheres: Implication on emission ratios, Atmospheric Environment, 82, 258-267.
Cain, K. P., and S. N. Pandis (2017), A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions, Atmospheric Measurement Techniques, 10(12), 4865-4876.
Collins, D. B., et al. (2017), Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments, Atmospheric Chemistry and Physics, 17(21), 13119.
Ćorović, A., V. Ilić, S. Durić, M. Marijan, and B. Pavković (2018), The real-time detection of traffic participants using yolo algorithm, paper presented at 2018 26th Telecommunications Forum (TELFOR), IEEE.
Donahue, N., A. Robinson, C. Stanier, and S. Pandis (2006), Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environmental Science Technology, 40(8), 2635-2643.
Geller, M., S. Biswas, and C. Sioutas (2006), Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer, Aerosol Science Technology
40(9), 709-723.
Guo, S., M. Hu, Y. Lin, M. Gomez-Hernandez, M. L. Zamora, J. Peng, D. R. Collins, and R. Zhang (2016), OH-initiated oxidation of m-xylene on black carbon aging, Environmental science technology, 50(16), 8605-8612.
Hofman, J., J. Staelens, R. Cordell, C. Stroobants, N. Zikova, S. Hama, K. Wyche, G. Kos, S. Van Der Zee, and K. Smallbone (2016), Ultrafine particles in four European urban environments: Results from a new continuous long-term monitoring network, Atmospheric environment, 136, 68-81.
Hong-li, W., J. Sheng-ao, L. Sheng-rong, H. Qing-yao, L. Li, T. Shi-Kang, H. Cheng, Q. Li-ping, and C. Chang-hong (2017), Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China, Science of the Total Environment, 607, 253-261.
Hu, M., J. Peng, K. Sun, D. Yue, S. Guo, A. Wiedensohler, and Z. Wu (2012), Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing, Environmental science technology, 46(18), 9941-9947.
Huang, W., H. Saathoff, X. Shen, R. Ramisetty, T. Leisner, and C. Mohr (2019), Seasonal characteristics of organic aerosol chemical composition and volatility in Stuttgart, Germany, Atmospheric Chemistry Physics, 19(18), 11687-11700.
Kahnert, M., and A. Devasthale (2011), Black carbon fractal morphology and short-wave radiative impact: a modelling study, Atmospheric Chemistry Physics
11(22), 11745-11759.
Katrib, Y., S. Martin, Y. Rudich, P. Davidovits, J. Jayne, and D. Worsnop (2005), Density changes of aerosol particles as a result of chemical reaction, Atmospheric Chemistry and Physics, 5(1), 275-291.
Khalizov, A. F., Y. Lin, C. Qiu, S. Guo, D. Collins, and R. Zhang (2013), Role of OH-initiated oxidation of isoprene in aging of combustion soot, Environmental science technology, 47(5), 2254-2263.
Kitamura, Y., M. Hayashi, and E. Yagi (2018), Traffic problems in Southeast Asia featuring the case of Cambodia's traffic accidents involving motorcycles, IATSS research, 42(4), 163-170.
Kostenidou, E., R. K. Pathak, and S. N. Pandis (2007), An algorithm for the calculation of secondary organic aerosol density combining AMS and SMPS data, Aerosol science technology, 41(11), 1002-1010.
Kuwata, M., Y. Kondo, and N. Takegawa (2009), Critical condensed mass for activation of black carbon as cloud condensation nuclei in Tokyo, Geophysical Research: Atmospheres, 114(D20).
Laakso, L., T. Grönholm, Ü. Rannik, M. Kosmale, V. Fiedler, H. Vehkamäki, and M. Kulmala (2003), Ultrafine particle scavenging coefficients calculated from 6 years field measurements, Atmospheric Environment, 37(25), 3605-3613.
Lohmann, U., and J. Feichter (2005), Global indirect aerosol effects: a review, Atmospheric Chemistry and Physics, 5(3), 715-737.
Mircea, M., M. Facchini, S. Decesari, F. Cavalli, L. Emblico, S. Fuzzi, A. Vestin, J. Rissler, E. Swietlicki, and G. Frank (2005), Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin, Atmospheric Chemistry and Physics, 5(11), 3111-3126.
Momenimovahed, A., and J. Olfert (2015), Effective density and volatility of particles emitted from gasoline direct injection vehicles and implications for particle mass measurement, Aerosol Science Technology, 49(11), 1051-1062.
Pang, Y., B. Turpin, and L. Gundel (2006), On the importance of organic oxygen for understanding organic aerosol particles, Aerosol Science Technology, 40(2), 128-133.
Petersson, J. (2016), Characterization of coated soot particles-Validating a new APM software and using it to design aerosol measurement set-ups, Lunds university.
Petters, M., and S. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmospheric Chemistry and Physics, 7(8), 1961-1971.
Pfister, G., R. McKenzie, J. Liley, A. Thomas, B. Forgan, and C. N. Long (2003), Cloud coverage based on all-sky imaging and its impact on surface solar irradiance, Journal of Applied Meteorology, 42(10), 1421-1434.
Rissler, J., M. E. Messing, A. I. Malik, P. T. Nilsson, E. Z. Nordin, M. Bohgard, M. Sanati, and J. H. Pagels (2013), Effective density characterization of soot agglomerates from various sources and comparison to aggregation theory, Aerosol Science Technology
47(7), 792-805.
Rissler, J., E. Z. Nordin, A. C. Eriksson, P. T. Nilsson, M. Frosch, M. K. Sporre, A. Wierzbicka, B. Svenningsson, J. Löndahl, and M. E. Messing (2014), Effective density and mixing state of aerosol particles in a near-traffic urban environment, Environmental science technology, 48(11), 6300-6308.
Roberts, G., and A. Nenes (2005), A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements, Aerosol Science Technology
39(3), 206-221.
Saha, P. K., A. Khlystov, and A. P. Grieshop (2018), Downwind evolution of the volatility and mixing state of near-road aerosols near a US interstate highway, Atmospheric Chemistry and Physics, 18(3), 2139-2154.
Sarkar, C., C. Venkataraman, S. Yadav, H. C. Phuleria, and A. Chatterjee (2019), Origin and properties of soluble brown carbon in freshly emitted and aged ambient aerosols over an urban site in India, Environmental Pollution, 254, 113077.
Schnitzler, E. G., A. Dutt, A. M. Charbonneau, J. S. Olfert, and W. Jäger (2014), Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors, Environmental science technology, 48(24), 14309-14316.
Sioutas, C., R. J. Delfino, and M. Singh (2005), Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research, Environmental health perspectives, 113(8), 947-955.
Song, C. H., and G. R. Carmichael (1999), The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long range transport, Atmospheric Environment, 33(14), 2203-2218.
Stankovich, S., D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff (2007), Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45(7), 1558-1565.
Szymlet, N., P. Lijewski, Ł. Rymaniak, B. Sokolnicka, and M. Siedlecki (2019), Comparative analysis of exhaust emissions from passenger cars and motorcycles, Combustion Engines, 58.
Tang, X., D. Price, E. Praske, D. Vu, K. Purvis-Roberts, P. Silva, D. Cocker Iii, and A. Asa-Awuku (2014), Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol, Atmospheric Chemistry and Physics, 14(12), 5959-5967.
Wang, J., J. E. Shilling, J. Liu, A. Zelenyuk, D. M. Bell, M. D. Petters, R. Thalman, F. Mei, R. A. Zaveri, and G. Zheng (2019), Cloud droplet activation of secondary organic aerosol is mainly controlled by molecular weight, not water solubility, Atmospheric Chemistry and Physics, 19(2), 941-954.
Yin, Z., X. Ye, S. Jiang, Y. Tao, Y. Shi, X. Yang, and J. Chen (2015), Size-resolved effective density of urban aerosols in Shanghai, Atmospheric Environment, 100, 133-140.
Zamora, M. L., J. Peng, M. Hu2, S. Guo, W. Marrero-Ortiz, D. Shang, J. Zheng, Z. Du, Z. Wu, and R. Zhang (2019), Measurement of aerosol properties during wintertime in Beijing, Atmospheric Chemistry and Physics Discussion, 2019, 1-15, doi:10.5194/acp-2019-308.
Zelenyuk, A., D. Imre, J.-H. Han, and S. Oatis (2008), Simultaneous measurements of individual ambient particle size, composition, effective density, and hygroscopicity, Analytical chemistry, 80(5), 1401-1407.
Zhang, G., L. Peng, X. Lian, Q. Lin, X. Bi, D. Chen, M. Li, L. Li, X. Wang, and G. Sheng (2018), An improved absorption Ångström exponent (AAE)-based method for evaluating the contribution of light absorption from brown carbon with a high-time resolution, Aerosol Air Qual. Res, 19, 15-24.
Zhang, R., A. F. Khalizov, J. Pagels, D. Zhang, H. Xue, and P. H. McMurry (2008), Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing, Proceedings of the National Academy of Sciences, 105(30), 10291-10296.
Zhang, R., G. Wang, S. Guo, M. L. Zamora, Q. Ying, Y. Lin, W. Wang, M. Hu, and Y. Wang (2015), Formation of urban fine particulate matter, Chemical Reviews, 115(10), 3803-3855.
Zhao, D., J. Xin, C. Gong, J. Quan, G. Liu, W. Zhao, Y. Wang, Z. Liu, and T. Song (2019), The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability, Science of The Total Environment, 692, 371-381.
Zhong, J., M. Kumar, J. S. Francisco, and X. C. Zeng (2018), Insight into chemistry on cloud/aerosol water surfaces, Accounts of chemical research, 51(5), 1229-1237.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17110-
dc.description.abstract在老化的過程中,氣膠可能透過內混或外混之方式與水溶性物質或是揮發性有機物質混合。因此,揮發性、吸濕性及有效密度是相互關聯的,並且在大氣環境中會隨時間有著動態的變化。然而,這些氣膠特性尚未同時被檢視,尤其是在台灣。因此,本研究發展出即時且現地之量測技術,透過結合揮發性串聯式電移動度分徑儀、氣膠質量分析儀及雲凝結核計數器(VT-DMA-APM-CCNc),能夠系統性且同步地監測在北台灣都市地區超細懸浮微粒(UFPs)之揮發性、吸濕性及有效密度。每日排放之氣體濃度與交通流量具有相似之行為,而這些氣體是二次無機和有機氣膠的潛在前驅物。環境條件[如:依強度區分之太陽光照度、風速及相對濕度 (降雨事件)]對於揮發性物質相分配及有效密度之影響將被檢視。此外,凝結於微粒上之高和低揮發性物質密度將會被估計。結果表明,光化學反應是太陽光照度的函數,其與氣膠老化具有密切相關。老化微粒之有效密度將會上升,而揮發性會下降。根據這些發現,低揮發性化合物被視為老化的物質且其和老化程度有關。此外,同步量測之參數包括AAE及Ks,闡明了微粒之光學性質及構型的改變。在中午,總是會發現最大值之AAE及最小值之Ks,這也暗示著微粒在中午是相對老化的,且被二次有機物質披覆並逐漸接近規則球形。此外,降雨事件之案例研究說明濕沉降造成之慣性衝擊是粗微粒(如:粒徑大小 > 1 μm)之重要去除機制之一,且PM1 和PM10之比值有顯著上升。高濕度將透過微粒形成之水膜而加速老化反應。綜合上述結果,在高強度光照、低風速及高相對濕度情況下,氣膠之揮發性、吸濕性及有效密度將於都市環境中有著快速的轉變。zh_TW
dc.description.abstractDuring aging processes, aerosol could be internally or externally mixed with water-soluble compounds or volatile organic compounds (VOC). Thus, volatility, hygroscopicity, and effective density are intercorrelated and dynamically evolving with time in ambient environment. However, these aerosol’s properties have not been examined at the same time, especially in Taiwan. Therefore, in this study, a real-time and in-situ measurement technique, which is a hyphenated volatile tandem differential mobility analyzer, aerosol particle mass analyzer and cloud condensation nuclei counter (VT-DMA-APM-CCNc) system, is developed to systematically explore the relationship among volatility, CCN activity and effective density of ultrafine particles (UFPs) in the urban area of northern Taiwan. The daily traffic-emitted gases, the potential precursors for secondary inorganic and organic aerosols, demonstrated a similar diurnal pattern with traffic flux. The effects of ambient conditions, such as the solar irradiance classified by the intensity, wind speed and relative humidity (precipitation event), on the phase partitioning of volatile materials and effective density were investigated. In addition, the density of condensed high- and low-volatile materials would be estimated. Results showed photochemical reaction, which is a function of solar irradiance, is closely related to aerosol aging. Effective density is increased while volatility is decreased for aged particles. According to these findings, low-volatile compounds are considered to be aged material and related to the degree of aging. In addition, the synchronous measurements of AAE and Ks can also shed the lights on the changes of optical property and morphology after aging. The maximum AAE and minimum Ks were always found at noon. These imply that the particles were aged at noon and coating with secondary organic matters and closed to regular spheres. Furthermore, the case study of precipitation event shows that wet deposition is one of the most important particle removal mechanisms in the atmosphere for coarse particles (i.e. particle size > 1.0 μm) due to inertial impaction, and the ratio of PM1 to PM10 significantly increased. High RH would accelerate the aging reaction by forming water film. In summary, under high solar irradiance, low wind speed, and high RH, aerosol’s volatility, hygroscopicity and effective density would be quickly changed in urban environment.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:56:53Z (GMT). No. of bitstreams: 1
U0001-0708202010420300.pdf: 6342491 bytes, checksum: 9a57183827747f29bf07d613d1f699dd (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Outline vi
List of figures vii
List of tables ix
Nomenclature x
Chapter 1. Introduction p.1
Chapter 2. Methodology p.5
2.1 Measurement site p.5
2.2 Instrument setup p.7
2.3 Thermodenuder (TD) p.9
2.3.1 Effect of flow rate on TD temperature p.11
2.3.2 Penetration p.11
2.3.3 The fraction of volatile compounds p.12
2.4 Effective density p.14
2.5 Hygroscopicity p.16
2.6 Auxiliary measurements p.16
Chapter 3. Results and Discussion p.18
3.1 Meteorological conditions p.18
3.2 Aerosol effective density and volatility p.22
3.3 Density of high-, low-, and non-volatile materials p.30
3.4 Particle aging p.33
3.4.1 Photochemical reaction p.33
3.4.2 Influences of wind speed and relative humidity p.42
Chapter 4. Conclusion p.48
References p.50
Supplemental Information p.55
口試委員意見回覆 p.69
dc.language.isoen
dc.title在台灣台北都市地區之氣膠揮發性、吸濕性及有效密度之探討zh_TW
dc.titleAerosol’s volatility, hygroscopicity and effective density in Taipei urban area, Taiwanen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張木彬(Moo-Been Chang),闕蓓德(Pei-Te Chiueh),林文印(Wen-Yinn Lin),楊禮豪(Li-Hao Young)
dc.subject.keyword揮發性,吸濕性,有效密度,老化,太陽光照度,風速,相對濕度,zh_TW
dc.subject.keywordVolatility,Hygroscopicity,Effective density,Aging,Solar irradiance,Wind speed,Relative humidity,en
dc.relation.page74
dc.identifier.doi10.6342/NTU202002602
dc.rights.note未授權
dc.date.accepted2020-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0708202010420300.pdf
  目前未授權公開取用
6.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved