請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17106完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李芳仁(Fang-Jen Lee) | |
| dc.contributor.author | Ming-Ting Tsai | en |
| dc.contributor.author | 蔡明庭 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:56:42Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | Alam, S.L., C. Langelier, F.G. Whitby, S. Koirala, H. Robinson, C.P. Hill, and W.I. Sundquist. 2006. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nature structural & molecular biology. 13:1029-1030.
Balch, W.E., R.A. Kahn, and R. Schwaninger. 1992. ADP-ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and the cis-Golgi compartment. The Journal of biological chemistry. 267:13053-13061. Bos, J.L., H. Rehmann, and A. Wittinghofer. 2007. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 129:865-877. D'Souza-Schorey, C., G. Li, M.I. Colombo, and P.D. Stahl. 1995. A regulatory role for ARF6 in receptor-mediated endocytosis. Science. 267:1175-1178. Donaldson, J.G. 2003. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. The Journal of biological chemistry. 278:41573-41576. Donaldson, J.G., and C.L. Jackson. 2011. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature reviews. Molecular cell biology. 12:362-375. Engel, T., A. Lueken, G. Bode, U. Hobohm, S. Lorkowski, B. Schlueter, S. Rust, P. Cullen, M. Pech, G. Assmann, and U. Seedorf. 2004. ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS letters. 566:241-246. Enomoto, K., and D.M. Gill. 1980. Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP ribosylation of the GTP-dependent regulatory component. The Journal of biological chemistry. 255:1252-1258. Falguieres, T., P.P. Luyet, and J. Gruenberg. 2009. Molecular assemblies and membrane domains in multivesicular endosome dynamics. Experimental cell research. 315:1567-1573. Gibbings, D.J., C. Ciaudo, M. Erhardt, and O. Voinnet. 2009. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature cell biology. 11:1143-1149. Gillingham, A.K., and S. Munro. 2007. The small G proteins of the Arf family and their regulators. Annual review of cell and developmental biology. 23:579-611. Hanson, P.I., S. Shim, and S.A. Merrill. 2009. Cell biology of the ESCRT machinery. Current opinion in cell biology. 21:568-574. Henne, W.M., N.J. Buchkovich, Y. Zhao, and S.D. Emr. 2012. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell. 151:356-371. Hong, J.X., F.J. Lee, W.A. Patton, C.Y. Lin, J. Moss, and M. Vaughan. 1998. Phospholipid- and GTP-dependent activation of cholera toxin and phospholipase D by human ADP-ribosylation factor-like protein 1 (HARL1). The Journal of biological chemistry. 273:15872-15876. Im, Y.J., and J.H. Hurley. 2008. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Developmental cell. 14:902-913. Kahn, R.A., J. Cherfils, M. Elias, R.C. Lovering, S. Munro, and A. Schurmann. 2006. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. The Journal of cell biology. 172:645-650. Kahn, R.A., and A.G. Gilman. 1984. ADP-ribosylation of Gs promotes the dissociation of its alpha and beta subunits. The Journal of biological chemistry. 259:6235-6240. Kahn, R.A., and A.G. Gilman. 1986. The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. The Journal of biological chemistry. 261:7906-7911. Kawasaki, M., K. Nakayama, and S. Wakatsuki. 2005. Membrane recruitment of effector proteins by Arf and Rab GTPases. Current opinion in structural biology. 15:681-689. Kozminski, K.G., L. Beven, E. Angerman, A.H. Tong, C. Boone, and H.O. Park. 2003. Interaction between a Ras and a Rho GTPase couples selection of a growth site to the development of cell polarity in yeast. Molecular biology of the cell. 14:4958-4970. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-685. Langelier, C., U.K. von Schwedler, R.D. Fisher, I. De Domenico, P.L. White, C.P. Hill, J. Kaplan, D. Ward, and W.I. Sundquist. 2006. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. Journal of virology. 80:9465-9480. Lee, M.C., L. Orci, S. Hamamoto, E. Futai, M. Ravazzola, and R. Schekman. 2005. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell. 122:605-617. Li, C.C., T.C. Chiang, T.S. Wu, G. Pacheco-Rodriguez, J. Moss, and F.J. Lee. 2007. ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Molecular biology of the cell. 18:4420-4437. Lin, C.Y., P.H. Huang, W.L. Liao, H.J. Cheng, C.F. Huang, J.C. Kuo, W.A. Patton, D. Massenburg, J. Moss, and F.J. Lee. 2000. ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. The Journal of biological chemistry. 275:37815-37823. Lin, C.Y., C.C. Li, P.H. Huang, and F.J. Lee. 2002. A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. Journal of cell science. 115:4433-4445. Lin, Y.C., T.C. Chiang, Y.T. Liu, Y.T. Tsai, L.T. Jang, and F.J. Lee. 2011. ARL4A acts with GCC185 to modulate Golgi complex organization. Journal of cell science. 124:4014-4026. Lu, L., G. Tai, and W. Hong. 2004. Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Molecular biology of the cell. 15:4426-4443. Macia, E., F. Luton, M. Partisani, J. Cherfils, P. Chardin, and M. Franco. 2004. The GDP-bound form of Arf6 is located at the plasma membrane. Journal of cell science. 117:2389-2398. Malerod, L., S. Stuffers, A. Brech, and H. Stenmark. 2007. Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation. Traffic. 8:1617-1629. Pasqualato, S., L. Renault, and J. Cherfils. 2002. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO reports. 3:1035-1041. Patel, M., T.C. Chiang, V. Tran, F.J. Lee, and J.F. Cote. 2011. The Arf family GTPase Arl4A complexes with ELMO proteins to promote actin cytoskeleton remodeling and reveals a versatile Ras-binding domain in the ELMO proteins family. The Journal of biological chemistry. 286:38969-38979. Piper, R.C., and D.J. Katzmann. 2007. Biogenesis and function of multivesicular bodies. Annual review of cell and developmental biology. 23:519-547. Progida, C., L. Malerod, S. Stuffers, A. Brech, C. Bucci, and H. Stenmark. 2007. RILP is required for the proper morphology and function of late endosomes. Journal of cell science. 120:3729-3737. Rusten, T.E., T. Vaccari, and H. Stenmark. 2012. Shaping development with ESCRTs. Nature cell biology. 14:38-45. Sabe, H. 2003. Requirement for Arf6 in cell adhesion, migration, and cancer cell invasion. Journal of biochemistry. 134:485-489. Schmidt, O., and D. Teis. 2012. The ESCRT machinery. Current biology : CB. 22:R116-120. Schurmann, A., S. Koling, S. Jacobs, P. Saftig, S. Krauss, G. Wennemuth, R. Kluge, and H.G. Joost. 2002. Reduced sperm count and normal fertility in male mice with targeted disruption of the ADP-ribosylation factor-like 4 (Arl4) gene. Molecular and cellular biology. 22:2761-2768. Slagsvold, T., R. Aasland, S. Hirano, K.G. Bache, C. Raiborg, D. Trambaiolo, S. Wakatsuki, and H. Stenmark. 2005. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. The Journal of biological chemistry. 280:19600-19606. Takai, Y., T. Sasaki, and T. Matozaki. 2001. Small GTP-binding proteins. Physiological reviews. 81:153-208. Teo, H., O. Perisic, B. Gonzalez, and R.L. Williams. 2004. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Developmental cell. 7:559-569. Van Valkenburgh, H., J.F. Shern, J.D. Sharer, X. Zhu, and R.A. Kahn. 2001. ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. The Journal of biological chemistry. 276:22826-22837. Vetter, I.R., and A. Wittinghofer. 2001. The guanine nucleotide-binding switch in three dimensions. Science. 294:1299-1304. Vidal, M., P. Mangeat, and D. Hoekstra. 1997. Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. Journal of cell science. 110 ( Pt 16):1867-1877. Volpicelli-Daley, L.A., Y. Li, C.J. Zhang, and R.A. Kahn. 2005. Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic. Molecular biology of the cell. 16:4495-4508. Wang, T., and W. Hong. 2006. RILP interacts with VPS22 and VPS36 of ESCRT-II and regulates their membrane recruitment. Biochemical and biophysical research communications. 350:413-423. Williams, R.L., and S. Urbe. 2007. The emerging shape of the ESCRT machinery. Nature reviews. Molecular cell biology. 8:355-368. Zhou, C., L. Cunningham, A.I. Marcus, Y. Li, and R.A. Kahn. 2006. Arl2 and Arl3 regulate different microtubule-dependent processes. Molecular biology of the cell. 17:2476-2487. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17106 | - |
| dc.description.abstract | 腺嘌呤核苷二磷酸核醣化相似因子4A (ARL4A),隸屬於腺嘌呤核苷二磷酸核醣化因子 (ARF) 的子家族腺嘌呤核苷二磷酸核醣化相似因子 (ARL) 家族的其中一員。這個蛋白質家族廣為人知的功能主要參與在囊泡傳遞運輸、細胞骨架重組、和胞器的形成等等。其中ARL4A又特別被報導了參與在細胞膜皺褶的形成、細胞骨架的調控、高基氏體的形成等等功能之中;然而ARL4A在囊泡傳遞運輸中扮演何種角色,目前還不明白。為了找出ARL4A可能的新功能,我們運用了酵母菌雙雜交篩選法,以一個新的ARL4A鳥糞嘌呤核苷二磷酸 (GDP) 結合態突變株ARL4A T51N為誘餌,來篩選人類胚胎時期腦的去氧核醣核酸基因庫。在十二個新篩選出的ARL4A結合蛋白中,發現了ESCRT 蛋白複合體的其中一個單元分子。ESCRT 蛋白複合體包含了複合體0,複合體I,複合體II,複合體III和 VPS4等成員。其功能為將泛素化 (ubiquitinated) 的膜蛋白由初級內體 (early endosome) 的膜上轉入內體空腔中 (intraluminal) 以形成多囊體 (multivesicular body),接著引導其走向降解的命運。因此,ESCRT複合體的功能在調控膜蛋白降解的途徑中是重要的存在。我們首先運用酵母菌雙雜交系統,以及利用穀胱苷肽轉移酶 (GST) 融合蛋白進行體外結合實驗,確認了ESCRT複合體單元分子和ARL4A之間有專一性的交互作用。並且發現ESCRT複合體單元分子偏好和GDP 結合態的ARL4A結合。接著也利用免疫螢光染色法在細胞中觀察到了ESCRT複合體次單元分子和ARL4A共同坐落於細胞膜和細胞核周圍區域。更進一步地,我們發現細胞在有表皮生長因子 (EGF) 刺激的條件下,剃除ARL4A的細胞將加速表皮生長因子受體 (EGFR) 降解之速度。反之,過量表現ARL4A的細胞將會減緩表皮生長因子受體的降解速度。另外我們利用N端共價結合螢光體之磷脂酰乙醇胺 (NRhPE) 標定了多泡體的位置和大小,並且發現在細胞中過量表現ARL4A將造成多泡體的分布不正常以及大小不均勻。這些實驗結果暗示了ARL4A可能在表皮生長因子受體透過多泡體進行降解的作用途徑中扮演著一個負向調控者的角色。 | zh_TW |
| dc.description.abstract | ADP-ribosylation factor-like protein 4A (ARL4A) is a member of the ARF/ARL small GTPases family. The ARF/ARL family is well-known for its functions on vesicular trafficking, cytoskeleton reorganization and organelle morphogenesis. ARL4A has been found to participate in regulations of membrane ruffling, cytoskeleton remodeling and Golgi organization; however, whether ARL4A is directly involved in vesicular trafficking remains unclear. In order to explore the new functions of ARL4A, we used a more accurate inactive GDP-bound mutant ARL4A T51N as bait and performed yeast two-hybrid screening to identify its novel interacting proteins. We have identified 12 potential interacting proteins of ARL4A T51N, and one of them is the subunit of Endosomal Sorting Complex Required for Transport (ESCRT) complex. ESCRT complexes, including ESCRT-0, -I, -II, -III, and VPS4, are involved in sorting of ubiqutinated endosomal membrane proteins into the multivesicular body (MVB), thus are required for their degradation. We first demonstrated the interaction between ARL4A and ESCRT subunit in vitro using yeast two-hybrid assay and γGTP-, GDP-loaded GST pull-down assay. Next, we studied their co-localization in vivo by immunofluorescence staining assay, and followed with monitoring the MVB pathway using epidermal growth factor (EGF) -stimulated EGF receptor (EGFR) degradation assay. Finally, we also studied the MVB biogenesis using NRhPE labeling assay. We found that the ESCRT subunit prefers interact with GDP-bound ARL4A in vitro and co-localized with membrane-associated ARL4As in perinuclear region and plasma membrane in vivo. We also found that ARL4A is involved in MVB biogenesis and EGF internalization as well as EGFR turnover in HeLa cells. Depletion of ARL4A in HeLa cells speeds up the EGF-stimulated EGFR degradation. By contrast, overexpression of ARL4A in HeLa cells delays the degradation of EGFR and defects the formation of MVB. These results imply that ARL4A may play a negative regulatory role in MVB-dependent EGFR degradation pathway through interacting with the ESCRT subunit. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:56:42Z (GMT). No. of bitstreams: 1 ntu-102-R00448010-1.pdf: 18103603 bytes, checksum: fd497172090043bdd936d135923aee0f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書-------------------------------------------2
中文摘要-------------------------------------------------3 Abstract------------------------------------------------4 Abbreviations-------------------------------------------6 1. Introduction 1.1. Small GTP-binding proteins-------------------------7 1.2. GEFs and GAPs--------------------------------------8 1.3. ADP-ribosylation factor (Arf) family---------------8 1.4. Human ARF-like proteins (ARLs)---------------------11 1.5. ADP-ribosylation factor-like 4A (ARL4A)------------12 1.6. ESCRT machinery and MVBs biogenesis----------------13 1.7. ESCRT-II complex and VPS36-------------------------15 2. Materials and methods---------------------------17 3. Results 3.1. Identification of VPS36 as an ARL4A interacting protein--------------------------------------------27 3.2. VPS36 specifically interacts with ARL4As but not ARL4Cs nor ARL4Ds------------------------------28 3.3. Full length VPS36 contains inhibition domain for ARL4As interaction-----------------------------29 3.4. The in vitro binding assay indicated that VPS36 prefers interacting with GDP-bound ARL4A-----------30 3.5. VPS36 A6 (LAKER/AAAAA) mutant could not interact with ARL4A--------------------------------31 3.6. Membrane-bound ARL4A enhances VPS36 targeting to plasma membrane---------------------------------32 3.7. Enhancement of VPS36 targeting to plasma membrane is independent of protein complex formed with ARL4A ---------------------------------33 3.8. Depletion of ARL4A speeds up the ligand-induced turnover of EGF/EGFR ------------------------------33 3.9. ARL4A overexpression has an effect similar to that of VPS36 depletion in EGFR degradation assay-------35 3.10. Either ARL4A overexpression or VPS36 depletion causes abnormal MVBs in size and distribution-----37 4. Discussion--------------------------------------39 5. Tables Table 1. Antibodies used in this thesis-----------------43 Table 2. Oligonucleotide used in this thesis------------44 Table 3. Putative ARL4A interacting proteins------------45 6. Figure Legends----------------------------------46 7. Figures-----------------------------------------54 8. Supplementary Figures---------------------------69 9. Reference---------------------------------------74 | |
| dc.language.iso | en | |
| dc.subject | 二磷酸核醣化相似因子 | zh_TW |
| dc.subject | 腺嘌呤核苷 | zh_TW |
| dc.subject | ARL4A | en |
| dc.title | 探討腺嘌呤核苷二磷酸核醣化相似因子ARL4A
與其結合蛋白ESCRT複合體次單元之作用途徑 | zh_TW |
| dc.title | Characterization of ARL4A and its interacting
protein ESCRT subunit | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑞華,周祖述,黃佩欣 | |
| dc.subject.keyword | 腺嘌呤核苷,二磷酸核醣化相似因子, | zh_TW |
| dc.subject.keyword | ARL4A, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 17.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
