請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17074
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖憶純(Yi-Chun Liao) | |
dc.contributor.author | Yung-Hsin Kao | en |
dc.contributor.author | 高芸歆 | zh_TW |
dc.date.accessioned | 2021-06-07T23:55:35Z | - |
dc.date.copyright | 2013-09-06 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2013-08-22 | |
dc.identifier.citation | Al-Ghamdi S, Albasri A, Cachat J, Ibrahem S, Muhammad BA, Jackson D, et al. (2011). Cten is targeted by Kras signalling to regulate cell motility in the colon and pancreas. PLoS One 6: e20919.
Albasri A, Al-Ghamdi S, Fadhil W, Aleskandarany M, Liao Y-C, Jackson D, et al. (2011).(a). Cten signals through integrin-linked kinase (ILK) and may promote metastasis in colorectal cancer. Oncogene 30: 2997–3002. Albasri A, Aleskandarany M, Benhasouna A, Powe DG, Ellis IO, Ilyas M, et al. (2011).(b). CTEN (C-terminal tensin-like), a novel oncogene overexpressed in invasive breast carcinoma of poor prognosis. Breast Cancer Res. Tr. 126: 47–54. Albasri A, Seth R, Jackson D, Benhasouna A, Crook S, Nateri AS, et al. (2009). C‐terminal tensin‐like (CTEN) is an oncogene which alters cell motility possibly through repression of E‐cadherin in colorectal cancer. J. Pathol. 218: 57–65. Archbold HC, Yang YX, Chen L, and Cadigan KM. (2012). How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta. Physiol. Scand. 204: 74–109. Ashton GH, Morton JP, Myant K, Phesse TJ, Ridgway RA, Marsh V, et al. (2010). Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. Dev. Cell 19: 259–269. Barbieri I, Pensa S, Pannellini T, Quaglino E, Maritano D, Demaria M, et al. (2010). Constitutively active Stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Cten. Cancer Res. 70: 2558–2567. Bockholt SM, and Burridge K. (1993). Cell spreading on extracellular matrix proteins induces tyrosine phosphorylation of tensin. J. Biol. Chem. 268: 14565–14567. Burridge K, Fath K, Kelly T, Nuckolls G, and Turner C. (1988). Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4: 487–525. Calderwood DA, Fujioka Y, de Pereda JM, Garcia-Alvarez B, Nakamoto T, Margolis B, et al. (2003). Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. U.S.A. 100: 2272–2277. Cance WG, Harris JE, Iacocca M V., Roche E, Yang X, Chang J, et al. (2000). Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin. Cancer Res. 6: 2417–2423. Chen H, Duncan IC, Bozorgchami H, and Lo SH. (2002). Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proc. Natl. Acad. Sci. U.S.A. 99: 733–738. Chen H, Ishii A, Wong W-K, Chen LB, and Lo SH. (2000). Molecular characterization of human tensin. Biochem. J. 351: 403–411. Chiang M-K, Liao Y-C, Kuwabara Y, and Lo SH. (2005). Inactivation of tensin3 in mice results in growth retardation and postnatal lethality. Dev. Biol. 279: 368–377. Clevers H, and Nusse R. (2012). Wnt/β-Catenin signaling and disease. Cell 149: 1192–1205. Cui Y, Liao Y-C, and Lo SH. (2004). Epidermal growth factor modulates tyrosine phosphorylation of a novel tensin family member, tensin 3. Mol. Cancer Res. 2: 225–232. Daub H, Olsen J V, Bairlein M, Gnad F, Oppermann FS, Korner R, et al. (2008). Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell 31: 438–448. Davis S, Lu ML, Lo SH, Lin S, Butler JA, Druker BJ, et al. (1991). Presence of an SH2 domain in the actin-binding protein tensin. Science 252: 712–715. Geiger B, Bershadsky A, Pankov R, and Yamada KM. (2001). Transmembrane extracellular matrix-cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2: 793–805. Geiger B, and Yamada KM. (2011). Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol. 3: a005033. Hong S-Y, Shih Y-P, Li T, Carraway KL, and Lo SH. (2013). CTEN prolongs signaling by EGFR through reducing its ligand-induced degradation. Cancer Res. [Electronic publication ahead of print.] Hornbeck P V, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, et al. (2012). PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40: D261–D270. Huang H-D, Lee T-Y, Tzeng S-W, and Horng J-T. (2005). KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res. 33: W226–W229. Hung M-C, and Link W. (2011). Protein localization in disease and therapy. J. Cell Sci. 124: 3381–3392. Hynes RO. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687. Hynes RO. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25. Ishii A, and Lo SH. (2001). A role of tensin in skeletal-muscle regeneration. Biochem. J. 356: 737–745. Jockusch B, Bubeck P, Giehl K, Kroemker M, Moschner J, Rothkegel M, et al. (1995). The molecular architecture of focal adhesions. Annu. Rev. Cell Dev. Biol. 11: 379–416. Katz M, Amit I, Citri A, Shay T, Carvalho S, Lavi S, et al. (2007). A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration. Nat. Cell Biol. 9: 961–969. Kolligs FT, Hu G, Dang C V, and Fearon ER. (1999). Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol. Cell. Biol. 19: 5696–5706. Lambert C, Leonard N, De Bolle X, and Depiereux E. (2002). ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18: 1250–1256. Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, et al. (2011). Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J. Biol. Chem. 286: 41530–41538. Li Y, Mizokami A, Izumi K, Narimoto K, Shima T, Zhang J, et al. (2010). CTEN/tensin 4 expression induces sensitivity to paclitaxel in prostate cancer. The Prostate 70: 48–60. Liao Y-C, Chen N-T, Shih Y-P, Dong Y, and Lo SH. (2009). Up-regulation of C-terminal tensin-like molecule promotes the tumorigenicity of colon cancer through beta-catenin. Cancer Res. 69: 4563–4566. Liao Y-C, and Lo SH. (2008). Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. Int. J. Biochem. Cell Biol. 40: 843–847. Lo S-S, Lo SH, and Lo SH. (2005). Cleavage of cten by caspase-3 during apoptosis. Oncogene 24: 4311–4314. Lo SH, Janmey PA, Hartwig JH, and Chen LB. (1994). Interactions of tensin with actin and identification of its three distinct actin-binding domains. J. Cell Biol. 125: 1067–1075. Lo SH, and Lo T Bin. (2002). Cten, a COOH-terminal tensin-like protein with prostate restricted expression, is down-regulated in prostate cancer. Cancer Res. 62: 4217–4221. Lo SH, Yu Q-C, Degenstein L, Chen LB, and Fuchs E. (1997). Progressive kidney degeneration in mice lacking tensin. J. Cell Biol. 136: 1349–1361. Lo SH. (2006). Focal adhesions: what’s new inside. Dev. Biol. 294: 280–291. Lo SH. (2004). Tensin. Int. J. Biochem. Cell Biol. 36: 31–34. Martuszewska D, Ljungberg B, Johansson M, Landberg G, Oslakovic C, Dahlback B, et al. (2009). Tensin3 is a negative regulator of cell migration and all four Tensin family members are downregulated in human kidney cancer. PLoS One 4: e4350. Nagano M, Hoshino D, Koshikawa N, Akizawa T, and Seiki M. (2012). Turnover of focal adhesions and cancer cell migration. Int. J. Cell Biol. 2012: ID 310616, 10 pages. Nardozzi JD, Lott K, and Cingolani G. (2010). Phosphorylation meets nuclear import: a review. Cell Communication and Signaling 8: 32. Nishino T, Sasaki N, Chihara M, Nagasaki K, Torigoe D, Kon Y, et al. (2012). Distinct distribution of the tensin family in the mouse kidney and small intestine. Exp. Anim. 61: 525–532. Qian X, Li G, Asmussen HK, Asnaghi L, Vass WC, Braverman R, et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proc. Natl. Acad. Sci. U.S.A. 104: 9012–9017. Sakashita K, Mimori K, Tanaka F, Kamohara Y, Inoue H, Sawada T, et al. (2008). Prognostic relevance of Tensin4 expression in human gastric cancer. Ann. Surg. Oncol. 15: 2606–2613. Salgia R, Brunkhorst B, Pisick E, Li J, Lo S, Chen L, et al. (1995). Increased tyrosine phosphorylation of focal adhesion proteins in myeloid cell lines expressing p210BCR/ABL. Oncogene 11: 1149–1155. Sasaki H, Moriyama S, Mizuno K, Yukiue H, Konishi A, Yano M, et al. (2003).(a). Cten mRNA expression was correlated with tumor progression in lung cancers. Lung Cancer 40: 151–155. Sasaki H, Yukiue H, Kobayashi Y, Fukai I, and Fujii Y. (2003).(b). Cten mRNA expression is correlated with tumor progression in thymoma. Tumor Biol. 24: 271–274. Smith KJ, Johnson KA, Bryan TM, Hill DE, Markowitz S, Willson JK, et al. (1993). The APC gene product in normal and tumor cells. Proc. Natl. Acad. Sci. U.S.A. 90: 2846–2850. Valenta T, Hausmann G, and Basler K. (2012). The many faces and functions of β-catenin. EMBO J. 31: 2714–2736. Wong Y-H, Lee T-Y, Liang H-K, Huang C-M, Wang T-Y, Yang Y-H, et al. (2007). KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res. 35: W588–W594. Wozniak MA, Modzelewska K, Kwong L, and Keely PJ. (2004). Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692: 103–119. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17074 | - |
dc.description.abstract | Cten (C-termial tensin-like)是 tensin 蛋白質家族中分子量最小的成員。它 是一個集中附著點(focal adhesion)蛋白質,並且在細胞附著、遷移和癌症發生過程中扮演重要角色。Cten 在各個時期的大腸癌中皆有表現量上升的現象,且過量表現的 Cten 蛋白質能夠增強大腸癌細胞的生長、轉移、侵略等癌症特性。
本研究顯示在人類大腸癌細胞株 SW480 中,除了細胞質的集中附著點外, Cten 還能進入細胞核,並在細胞質及細胞核內和 β-catenin 蛋白質發生交互作用。 β-catenin 蛋白質是 Wnt 訊息傳導路徑中的核心分子。很高比例的大腸癌中都在此路徑上發生變異,最後造成 β-catenin 不正常地累積於細胞核內,活化與癌症相關基因的轉錄。本研究使用冷光報導系統發現當 Cten 能夠進入細胞核中時,似乎會對 β-catenin 之轉錄功能稍有增強作用。此觀察為 Cten 具有促進大腸癌發生之活性的分子機轉,提供了一可能解釋。 此外,本研究也探討 Cten 在細胞中分佈的機制,發現 Cten 與 β-catenin 的存在、及兩者間的交互作用,對於彼此進入細胞核皆非必需。然而,我們發現細胞核中的 Cten 似乎具有較高的磷酸化程度,而且當六個保守性磷酸化位置受到突變時,Cten 便不再能夠進入核中。這些結果說明磷酸化可能在 Cten 於細胞中分 佈調控中扮演重要角色。最後,我們以 Kinasephos2.0 網站預測可能磷酸化這些位點的蛋白質激酶,做為未來研究方向之參考。 | zh_TW |
dc.description.abstract | C-terminal tensin-like (Cten) protein, the smallest member of the tensin protein family, is a focal adhesion molecule that plays a role in cell adhesion, migration and the development of malignancies. Elevated Cten level has been detected in all stages of colon cancer, and Cten overexpression promotes the tumorigenicity of colon cancer cells.
In this study, we demonstrated that besides focal adhesions, a high population of Cten is present in the nucleus of human colon cancer SW480 cells, and that Cten binds to β-catenin in both the cytoplasm and the nucleus. β-catenin is the central mediator of Wnt signaling, a pathway whose over-activation is highly involved in colon cancer development. Ultimately, such aberrant activation results in improper accumulation of β-catenin in the nucleus, where it triggers the transcription of cancer-associated genes. Using the dual-luciferase reporter system, we showed that Cten may mildly promote β-catenin-dependent transcription in a nuclear-targeting-dependent manner, suggesting one possible explanation for its oncogenic activity in colon cancers. Exploring the mechanisms underlying Cten’s unexpected nuclear entry, our results implied that the presence of and interaction with β-catenin may not be necessary for the nuclear targeting of Cten. However, we discovered that Cten appeared to be more heavily phosphorylated in the nucleus, and that mutation of six conserved potential phosphorylation sites inhibits the nuclear accumulation of Cten, indicating a role for phosphorylation in specifying Cten’s subcellular distribution. In the end, in silico analysis was carried out to identify kinases that might be responsible for phosphorylations of these mutated residues. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:55:35Z (GMT). No. of bitstreams: 1 ntu-101-R00B22037-1.pdf: 1520111 bytes, checksum: 0c70a665946dcd5ac49f29cce85b05ee (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Abstract i
摘 要 ii List of Abbreviations iii Table of Contents v Chapter 1. Introduction 1 1.1 Focal Adhesion 1 1.2 The Tensin Protein Family 2 1.2.1 Structures 2 1.2.2 Functions 2 1.3 C-terminal Tensin-like Molecule’s Roles in Cancers 3 1.3.1 Cten As A Tumor Suppressor 3 1.3.2 Cten As An Oncogenic Protein 4 1.3.3 Cten’s Nuclear Localization and Association with β-catenin in Colon Cancer 4 1.4 Wnt/β-catenin Signaling 5 1.5 Aims of This Study 6 Chapter 2. Materials and Methods 7 2.1 Cell Culture 7 2.1.1 Subculturing 7 2.1.2 Freezing and Thawing 7 2.1.3 Cell Counting 8 2.2 Plasmids and Transfection 8 2.2.1 Cten Expression Plasmids 8 2.2.2 β-catenin Expression Plasmids 9 2.2.3 Luciferase Reporter Plasmids 9 2.2.4 Transfection 10 2.3 siRNA-mediated RNA Interference 10 2.4 Subcellular Fractionation and Whole Cell Lysis 10 2.5 Protein Quantification 11 2.6 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 11 2.7 Western Blotting 12 2.7.1 Wet Transfer 12 2.7.2 Immunoblotting 12 2.7.3 Primary Antibodies 13 2.7.4 Stripping 13 2.8 Immunoprecipitation (IP) and Co-IP 14 2.9 Dual-Luciferase Reporter Assay 14 2.10 Phosphoprotein Staining 15 2.10.1 Gel Staining and Imaging 15 2.10.2 Area Density Analysis 16 2.11 Statistical Analysis 16 Chapter 3. Results 17 3.1 Cten resides in the nucleus and associates with β-catenin in SW480 colon cancer cells. 17 3.2 Cten may mildly promote β-catenin’s transcriptional activity. 17 3.3 Cten and β-catenin may not need each other for nuclear localization. 19 3.4 Cten may be more heavily phosphorylated in the nucleus of SW480 cells. 20 3.5 Mutation of six conserved potential phosphorylation sites may have an impact on Cten’s nuclear accumulation. 21 Chapter 4. Discussions and Future Perspectives 23 References 27 Figures and Tables 33 | |
dc.language.iso | en | |
dc.title | 大腸癌細胞中 Cten 蛋白質在 Beta-catenin 介導訊息路徑中所扮演角色及其進入細胞核之機制探討 | zh_TW |
dc.title | Studies on the β-catenin-dependent Roles and the Nuclear Targeting Mechanisms of Cten in Colon Cancer Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王愛玉(Ai-Yu Wang),張麗冠(Li-Kwan Chang),謝淑貞(Shu-Chen Hsieh),賴韻如(Yun-Ju Lai) | |
dc.subject.keyword | Cten 蛋白質,β-catenin 蛋白質,大腸癌,細胞核,磷酸化, | zh_TW |
dc.subject.keyword | Cten,β-catenin,colon cancer,nuclear targeting,phosphorylation, | en |
dc.relation.page | 46 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-08-22 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。