請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17057完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫雅麗(Yeali S. Sun) | |
| dc.contributor.author | Nai-Yuan Cheng | en |
| dc.contributor.author | 鄭乃元 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:54:56Z | - |
| dc.date.copyright | 2013-09-02 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-29 | |
| dc.identifier.citation | [1] Ho, Yao Hua, Yao Chuan Wu, and Meng Chang Chen. 'PLASH: a platform for location aware services with human computation.' Communications Magazine, IEEE 48.12 (2010): 44-51.
[2] Mao Ye, Dong Shou, Wang-Chien Lee et. Al. On the Semantic Annotation of Places in Location-BasedSocial Networks.KDD, 2011. [3] N.D. Lane, D.Lymberopoulos, F. Zhao, Andrew T. Campbell.Hapori: Context-based Local Search for Mobile Phones using Community Behavioral Modeling and Similarity. UbiComp 2011 [4] Donnie H. Kim, Kyungsik Han, Deborah Estrin. Employing User Feedback for Semantic Location Services.UbiComp 2011 [5] Yohan Chon and Hojung Cha.LifeMap: a smartphone-Based context Provider for Location-Based services. IEEE Pervasive Computing 2011 [6] Google Now :http://www.google.com/landing/now/ [7] Albrecht Schmidt, Michael Beigl, and Hans-W.Gellersen.There is more to Context than Location. Computer & Graphics, 1999 [8] Zhang, Tong. 'Solving large scale linear prediction problems using stochastic gradient descent algorithms.' Proceedings of the twenty-first international conference on Machine learning. ACM, 2004. [9] I. Constandache, S. Gaonkar, M. Sayler, R.R. Choudhury, L. Cox. EnLoc: Energy-Efficient Localization for Mobile Phones. IEEE INFOCOM conference, 2009 [10] Yan, Tingxin, et al. 'Fast app launching for mobile devices using predictive user context.' Proceedings of the 10th international conference on Mobile systems, applications, and services. ACM, 2012. [11] E. Miluzzo, M. Papandrea, N. D. Lane, A. M. Sarroff, S. Giordano, A. T. Campbell. Tapping into the Vibe of the City Using VibN, a Continuous Sensing Application for Smartphones. SCI 2011 [12] Bastian, Mathieu, Sebastien Heymann, and Mathieu Jacomy. 'Gephi: an open source software for exploring and manipulating networks.' ICWSM. 2009. [13] Chang, Chih-Chung, and Chih-Jen Lin. 'LIBSVM: a library for support vector machines.' ACM Transactions on Intelligent Systems and Technology (TIST) 2.3 (2011): 27. [14] Srikant, Ramakrishnan, and Rakesh Agrawal. Mining sequential patterns: Generalizations and performance improvements. Springer Berlin Heidelberg, 1996. [15] Hall, Mark, et al. 'The WEKA data mining software: an update.' ACM SIGKDD Explorations Newsletter 11.1 (2009): 10-18. [16] Shu-Bo Chao. “Context-Aware Daily Activity Summarization with Mobile Devices.” 2013 [17] Huang, Tzu-Kuo, Ruby C. Weng, and Chih-Jen Lin. 'Generalized Bradley-Terry models and multi-class probability estimates.' The Journal of Machine Learning Research 7 (2006): 85-115. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17057 | - |
| dc.description.abstract | 近幾年來,智慧型行動裝置蓬勃發展,包含上網速度、運算能力越來越快,以及裝置上的嵌入式晶片越來越豐富,這樣的變化給予行動商務平台甚廣的發展空間,適地性服務就是其中最廣受歡迎的應用之一。
在這篇論文中,我們提出了一個全新的整合服務:我們融合了自動化的日誌紀錄服務以及預測使用者未來事件的功能,提供使用者檢視自身過去歷史、系統對於當前所發生事件的回應、以至於未來即將發生的事情預測,從過去到未來的生活全都涵蓋到了。在自動化日誌紀錄的部分,我們利用手機內建的多種嵌入式晶片識別出使用者所在處最有可能的point of interest,並且運用使用者過往的紀錄,推測出使用者在這個地點的行為。而在未來事件預測的部分,本論文藉助於資料探勘的技術,運用分類與關聯關係分析的方法從使用者的過去經驗中,事先找出未來最有可能發生的項目。 | zh_TW |
| dc.description.abstract | Recently, mobile devices have faster network connection and greater computation power. Also, various sensors have been embedded on to the hand-held devices. This trend has leaded the mobile computing field into a new era and numerous applications can be achieved. Within all, location based services are one of the biggest new hit.
In this thesis, we demonstrated a new integrated service called MobiFairy, which we combined the automatic journal service with a personal future event prediction mechanism. With this application, we provided the user the ability to browse through his or her past history, display recommendation according to current events, and predict the user’s future behavior. In short, we’ve covered the whole timeline. In the part where the application automatically does the journaling, we take advantage from the mobile embedded sensors. By monitoring various sensors, we came up with a sensor recognition mechanism which can recognize point of interest of where the user has visited. By matching past history, it is possible for the system to find the user’s most possible event occurred at this current location. In the part of future prediction, this thesis applied data mining techniques including classification and association rules analysis. By using these two methods, the system could learn from the past event patterns of its user, and make the most possibility estimation toward the near future in advance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:54:56Z (GMT). No. of bitstreams: 1 ntu-102-R00725013-1.pdf: 2697116 bytes, checksum: fc7b3b799931915a2a754a9c23fb9519 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試審定書 i
誌謝 ii 中文摘要 iii ENGLISH ABSTRACT iv LIST OF CONTENTS vi LIST OF FIGURES viii LIST OF TABLES x 1. Introduction 1 2. Related Works 4 2.1 Context Awareness 4 2.2 Related Algorithms 6 2.3 Similar Mobile Systems 7 3. Methodology 9 3.1 System Structure and Design 10 3.2 POI recognition 20 3.3 Agenda/History Design 30 3.4 User’s Behavior Learning 31 4. Experiment Evaluation 36 4.1 Experiment Environment 36 4.2 POI statistics 36 4.3 Classification evaluation 37 4.4 Association rules analysis evaluation 42 4.5 Fusion of Classification and Association rules analysis 43 4.6 Evaluation on moving valuable – classification filter 45 5. Discussion & Limitation 47 6. Conclusion 49 7. Reference 51 | |
| dc.language.iso | en | |
| dc.subject | point of interest | zh_TW |
| dc.subject | 行動運算 | zh_TW |
| dc.subject | 適地性服務 | zh_TW |
| dc.subject | 嵌入式晶片識別應用 | zh_TW |
| dc.subject | 分類 | zh_TW |
| dc.subject | 關聯關係分析 | zh_TW |
| dc.subject | mobile computing | en |
| dc.subject | association rules analysis | en |
| dc.subject | classification | en |
| dc.subject | sensors recognition application | en |
| dc.subject | location based services | en |
| dc.subject | point of interest | en |
| dc.title | 利用情境感知晶片實踐適地性自動日誌系統 | zh_TW |
| dc.title | MobiFairy: Smart Location-based Diary System using
Context Sensors on Mobile Phones | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳孟彰,陳建錦,張時中,潘育群 | |
| dc.subject.keyword | 行動運算,point of interest,適地性服務,嵌入式晶片識別應用,分類,關聯關係分析, | zh_TW |
| dc.subject.keyword | mobile computing,point of interest,location based services,sensors recognition application,classification,association rules analysis, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-30 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
