請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17033完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟(Guo-Dung Su) | |
| dc.contributor.author | Hui-Kai Shen | en |
| dc.contributor.author | 沈惠凱 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:54:06Z | - |
| dc.date.copyright | 2013-11-05 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-10-13 | |
| dc.identifier.citation | [1] J. Duparre, P. Schreiber, P. Dannberg, T. Scharf, P. Pelli, R. Vӧlkel, H.-P. Herzig, and A. Brauer, “Artifical compound eyes–different concepts and their application to ultra flat image acquisition sensors,” in MOEMS and Miniaturized Systems IV, A. El–Fatatry, ed., Proc. SPIE 5346, 89–100, 2004.
[2] Els Moens, Youri Meureta, Heidi Ottevaerea, Mukul Sarkar, David San Segundo Bello,Patrick Merken, and Hugo Thienpont, “An insect eye based image sensor with very large field of view,” Proc. of SPIE Vol. 7716, 77162D, 2010. [3] Warren J. Smith, (2000), Modern Optical Engineering 3rd edition, SPIE RRESS, McGraw-Hill. [4] Warren J. Smith, Genesee Optics Software, Inc. (1992), Modern Lens Design, McGraw-Hill. [5] MILTON LAIKIN, (1995), LENS DESIGN, Marcel Dekker, Inc. [6] Max Born and Emil Wolf, (1999), Principles of Optics 7th edtion, CAMBRIDGE UNIVERSITY PRESS. [7] Watler Wȍltche, (1980), Optical system design with reference to the evolution of the double Gauss, Proc. of SPIE Vol. 0237, International Lens Design. [8] H.P. D. Shieh, Y.P. Huang, and K.W. Chien, “Micro-optics for liquid crystal displays applications,” IEEE/OSA J. Disp. Technol., vol.1, no. 1, pp. 62–76, 2005. [9] H.J. Peng, Y.L. Ho, X.J. Yu, M. Wong, and H.S. Kwok, “Coupling efficiency enhancement in organic light-emitting devices using microlens array—theory and experiment,” IEEE/OSA J. Disp. Technol., vol. 1, no. 2, pp. 278–282, 2005. [10] V. Lin, H.C. Wei, H.T. Hsieh, and G.D. J. Su, “An optical wavefront sensor based on a double layer microlens array,” Sensors, vol. 11, no. 11, pp. 10293-10307, 2011. [11] J.J. Yang, Y.S. Liao, and C.F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Opt. Commun., vol. 270, no. 2, pp. 433-440, 2007. [12] R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nature methods, vol. 6, no. 7, pp. 511-512, 2009. [13] H.C. Ko, M.P. Stoykovich, J.Z. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J. B. Geddes III, J.L. Xiao, S.D. Wang, Y.G. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature, vol. 454, no. 7205, pp. 748-753, 2008. [14] D. Zhu, X. Zeng, C. Li, and H. Jiang, “Focus-Tunable microlens arrays fabricated on spherical surfaces,” IEEE/ASME J. Microelectromech. Syst., vol.20, no.2. pp. 389-395, 2011. [15] B. Aldalali, D. Zhu and H. Jiang, “Fabrication of polydimethylsiloxane microlens arrays on curved surfaces,” in Proc. Int. Conf. Opt. MEMS Nanophoton., Istanbul, Turkey, pp. 239–240, 2011. [16] X. Zeng and H. Jiang, “Fabrication of complex structures on nonplanar surfaces through a transfer method,” J. Microelectromech. Syst., vol. 20, no. 1, pp. 6–8, 2011. [17] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Journal of Optics A: Pure and Applied Optics, vol. 8, pp. 407-429, 2006. [18] Zoran D. Popovic, Robert A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Optical Society of America.: Applied Optics, vol. 27,pp. 1281-1284, 1988. [19] T. Rubico Jay and M. B. Stern, “Preshaping photoresist for refractive microlens fabrication,” Optical Engineering, vol. 33, pp. 3552-3555, 1994. [20] H. Ottevaere, V. Gomez, B. Volckaerts, M. Vervaeke, P. Vynck, A. Hermanne, and H. Thienpont, “The fabrication and characterization of plastic microlens arrays by deep lithography with protons,” pp. 287-295, 2004. [21] K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt., vol. 42, pp. 6349-6359, 11/01 2003. [22] MacFarlane, D.L.; Narayan, V.; Tatum, J.A.; Cox, W.R.; Chen, T.; Hayes, D.J.; , “Microjet fabrication of microlens arrays,” Photonics Technology Letters, IEEE , vol.6, no.9, pp.1112-1114, Sept. 1994. [23] Keith G. Fife, “Devices for integrated multi-aperture imaging,” A dissertation submitted to the department of electrical engineering and the committee on graduate studies of Stanford University, pp.20, June 2009. [24] Ciao-Ci Lin, “Microlens array for the enhancement of external quantum efficiency of planar light-emitting devices,” National Dong Hwa Univ., Taiwan, 2005, in press. [25] V. Lin, “Application of Long-Focal-Length microlens arrays on Shack-Hartmann Wavefront Sensor,” National Taiwan Univ., Taiwan, 2011, in press. [26] H.C. Ko, M.P. Stoykovich, J.Z. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J. B. Geddes III, J.L. Xiao, S.D. Wang, Y.G. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature, vol. 454, no. 7205, pp. 748-753, 2008. [27] B. Aldalali, D. Zhu and H. Jiang, “Fabrication of Polydimethylsiloxane Microlens Arrays on Curved Surfaces,”in Proc. Int. Conf. Opt. MEMS Nanophoton., Istanbul, Turkey, pp. 239–240, 2011. [28] X. Zeng and H. Jiang, “Fabrication of Complex Structures on Nonplanar Surfaces Through a Transfer Method,”J. Microelectromech. Syst.,vol. 20, no. 1, pp. 6–8, 2011. [29] Yi-Shiuan Cherng, Vinna Lin, and Guo-Dung John Su, “Fabrication of Polydimethylsiloxane microlens array on spherical surface by multi-replication process,” Opt. Commun., pp. 116, 2012. [30] R. E. Fischer and B. Tadic-Galeb, Optical System Design, International ed.: McGraw-Hill, 2000. [31] Geunyoung Yoon, Ph. D. Aberration Theory [Online]. Available: http://www.imagine-optic.com/downloads/imagine-optic_yoon_article_optical-wavefront-aberrations-theory.pdf. [32] Jacques Duparre, Daniela Radtke, Andreas Bruckner, and Andreas Brauer, “Latest Developments in Microoptical Artificial Compound Eyes: A Promising Approach for Next Generation Ultra-Compact Machine Vision,” Proc. of SPIE Vol. 6503, 65030I, 2007. [33] Andreas Bruckner, Robert Leitel, Alexander Oberdӧrster, Peter Dannberg, Frank Wippermann, and Andreas Brauer, “Multi-aperture optics for wafer-level cameras,” Proc. of SPIE Vol. 10 (4), 043010, 2011. [34] Julia Meyer, Andreas Bruckner, Robert Leitel, Peter Dannberg, Andreas Brauer, and Andreas Tunnermann, “Optical Cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519, 2011. [35] Gretchen Alper (2011, Mar. 14). Flat field correction improves machine vision camera uniformity. [Online]. Available: http://info.adimec.com/blogposts/bid/43199/Flat-field-correction-improves-machine-vision-camera-uniformity. [36] Flat Field Correction [Online]. Available: http://www.pixelink.com/umbraco/supportkb/?solution=/_ui/selfservice/pkb/PublicKnowledgeSolution/d?&id=50180000000SFTzCsY [37] Julia Meyer, Andreas Bruckner, Robert Leitel, Peter Dannberg, Andreas Brauer, and Andreas Tunnermann, “Ultra-compact imaging system based on multi aperture architecture,” Proc. of SPIE Vol. 7930, 79300C, 2011. [38] Gebirie Y. Belay, Youri Meuret, Heidi Ottevaere, and Hugo Thienpont, “Optical design of a multi-channel, multi-resolution imaging system,” Proc. of SPIE Vol. 8429, 84290A, 2012. [39] Focus pattern. [Online]. Available: http://www.rondexter.com/intermediate/equipment/focus_pattern.htm. [40] Lenna. [Online]. Available: http://www.cs.cmu.edu/~chuck/lennapg/lenna.shtml. [41] Chun-Shan Chen, Tsung-Han Tsai, and Ming-Ta Chou, US Patent, US 20130235473, OPTICAL IMAGE SYSTEM, 2013. [42] Po-Chung Huang, “Bio-inspired compact camera using curved microlens array,” National Taiwan Univ., Taiwan, 2013, in press. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17033 | - |
| dc.description.abstract | 目前市面上的手機鏡頭模組,厚度大約在10 mm以下,隨著體積越做越薄、輕巧及高解析度的趨勢,其鏡頭的製作難度也不斷提升。因此,如何在更小的空間中,賦予手機鏡頭更高的成像品質,也成為各家手機廠商不斷研究的課題之ㄧ。
在本篇論文中,我們提出了一種微型多通道的光學系統。這是一種具有高解析度及小體積的成像系統,擁有兩百五十萬畫素,且總厚度不超過3 mm,符合目前手機鏡頭要求的基本條件,並會在細節中,對其做描述及評價。 利用光學設計軟體 ZEMAX,開始光學系統的設計。我們設計的光學系統是結合人眼與昆蟲複眼架構組合而成的手機鏡頭設計,利用兩片凸新月型透鏡模擬人眼,加上以曲面上的微透鏡來模擬昆蟲複眼的結構,達到廣視角的目的。 其設計特點在於利用多重組態的模式,每次只允許特定角度的入射光通過特定的單一微透鏡,以避免因cross-talk產生的鬼影,而且藉由調整每一片微透鏡的曲率,讓不同角度的入射光,皆能在成像平面上聚焦,進而得到清晰的影像區塊;將所有單一微透鏡形成的影像區塊做拼接,最後會得到一個完整直立的影像。 由於微製程技術不斷進步,使得這種成像系統,未來有機會實現在手機鏡頭的製作上。最後,我們將會對此系統模擬結果進行討論以及與手機專利做比較。 | zh_TW |
| dc.description.abstract | In this paper, we proposed a multi-channel imaging system, which combines the principles of the insect compound eye and the human eye. The optical system enables the reduction of track length of the imaging device to achieve miniaturization. With the aid of optical engineering software ZEMAX, the multi-channel structure is simulated by a curved microlens array (MLA), and we used a Hypergon lens as the main lens to simulate the human eye, which can achieve the purpose of the wide field of view (FOV). With this architecture, each microlens of a MLA transmits a segment of the overall FOV. The partial images that are separately recorded in different channels are stitched together to form the final image of the whole FOV by software processing.
This design is 2.70 mm thick, with 59 channels and 102˚× 90˚ FOV is optimized using ZEMAX ray tracing software on a 5.63 mm × 3.69 mm image plane. Given recent progress in the fabrication of microlenses, this image system has potentials to be commercialized. Due to the microlenses are realized by state-of-the-art micro-optical fabrication techniques on a wafer level that are suitable for application in mobile phone camera in the future. Finally, we will discuss the simulation results of this system and compare with a mobile phone patent. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:54:06Z (GMT). No. of bitstreams: 1 ntu-102-R00941053-1.pdf: 7375440 bytes, checksum: 65a60b5ea1bc95e3b7dcd8790a8c6854 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Single aperture eye 2 1.2 Compound eye 2 1.3 Wide angle lens 3 1.3.1 Hypergon lens 4 1.3.2 Topogon lens 5 1.3.3 Metrogon lens 5 1.4 Wide angle lens camera 6 1.5 Microlens array (MLA) 7 1.5.1 Circular MLA 7 1.5.2 Other shapes MLA 9 1.5.3 Microlenses on a curved surface 12 Chapter 2 Aberration theory 17 2.1 Wave aberration 17 2.2 Seidel aberrations 20 2.2.1 Spherical aberration 20 2.2.2 Coma 21 2.2.3 Astigmatism 21 2.2.4 Field curvature 23 2.2.5 Distortion 23 2.3 Chromatic aberration 24 2.4 Ghost image 26 2.5 Overlap 27 Chapter 3 Design of a multi-channel imaging system 28 3.1 Literature review 28 3.1.1 Working principle 28 3.2 Design and optimizations 30 3.2.1 Hypergon lens 32 3.2.2 Microlens array design 34 3.2.3 The field apertures on an IR-filter 41 3.2.4 Image processing 45 Chapter 4 Image process 47 4.1 Flat field correction (FFC) 47 4.1.1 Description 47 4.1.2 Example images 50 Chapter 5 Results and discussions 52 5.1 System layout 52 5.2 Discussions 55 Chapter 6 Conclusion 63 REFERENCE 65 | |
| dc.language.iso | en | |
| dc.subject | 廣視角 | zh_TW |
| dc.subject | 微透鏡 | zh_TW |
| dc.subject | 人眼 | zh_TW |
| dc.subject | 複眼 | zh_TW |
| dc.subject | 手機鏡頭 | zh_TW |
| dc.subject | wide field of view | en |
| dc.subject | mobile phone camera | en |
| dc.subject | compound eye | en |
| dc.subject | human eye | en |
| dc.subject | microlenses | en |
| dc.title | 利用曲面上的微透鏡在廣角鏡頭之設計 | zh_TW |
| dc.title | Wide angle camera in multi-channel architecture using microlenses on a curved surface | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君,吳肇欣 | |
| dc.subject.keyword | 微透鏡,人眼,複眼,手機鏡頭,廣視角, | zh_TW |
| dc.subject.keyword | microlenses,human eye,compound eye,mobile phone camera,wide field of view, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-10-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
