Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17021
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周中哲(Chung-Che Chou)
dc.contributor.authorHou-Chun Xiongen
dc.contributor.author熊厚淳zh_TW
dc.date.accessioned2021-06-07T23:53:27Z-
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citationATC (2017), Guidelines for Nonlinear Structural Analysis for Design of Buildings: Part IIa – Steel Moment Frames, NIST GCR 17-917-46v2.
ASCE (2014), Seismic Evaluation and Retrofit of Existing Buildings, ASCE 41-13, American Society of Civil Engineers, Reston, VA.
ASCE (2017), Seismic Evaluation and Retrofit of Existing Buildings, ASCE 41-17, American Society of Civil Engineers, Reston, VA.
AISC (2016), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, Illinois.
AISC (2016), Specification for Structural Steel Buildings, ANSI/AISC 360-16, American Institute of Steel Construction, Chicago, Illinois.
AISC (2016), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, AISC 358-16, American Institute of Steel Construction, Chicago, IL.
Nakashima1, M., Ogawa, K., and Inoue, K. (2002). Generic frame model for simulation of earthquake responses of steel moment frames. Earthquake Engineering and Structural Dynamics; 31:671-692.
Nakashima, M., Matsumiya, T., Suita, K., and Liu, D. (2006). Test on full-scale three-story steel moment frame and assessment of ability of numerical simulation to trace cyclic inelastic behavior. Earthquake Engineering and Structural Dynamics; 35:3-19.
Fadden, M., and McCormick, J. (2012) Cyclic quasi-static testing of hollow structural section beam members. Journal of Structural Engineering, 2013, 138(5):561-570.
Lignos, D. G., Hikino, T., Matsuoka, Y., and Nakashima1, M. (2013). Collapse Assessment of Steel Moment Frames Based on E-Defense Full-Scale Shake Table Collapse Tests. Journal of Structural Engineering, 2013, 139(1):120-132.
Fogarty, J., and El-Tawil, S. (2015). Collapse Resistance of Steel Columns under Combined Axial and Lateral Loading. Journal of Structural Engineering, 2016, 142(1): 04015091
Suzuki, Y., and Lignos, D. G.(2017). Collapse Behavior of Steel Columns as Part of Steel Frame Buildings: Experiments and Numerical Models. 16th World Conference on Earthquake, 16WCEE 2017, Santiago Chile, January 9th to 13th 2017.
Elkady, A., and Lignos, D. G. (2018). Full-Scale Testing of Deep Wide-Flange Steel Columns under Multiaxis Cyclic Loading: Loading Sequence, Boundary Effects, and Lateral Stability Bracing Force Demands. Journal of Structural Engineering, 2018, 144(2): 04017189
Lin, J. L., Chen, W.H., Hsiao, F. P., Weng, Y. T., Shen, W. C., Weng, P. W., Li, Y. A., and Chao, S. H. (2020). Simulation and analysis of a vertically irregular building subjected to near-fault ground motions. Earthquake Spectra, 2020, 1-32.
Lin T. H., Chou, C. C., and Chen, G. W. (2019). A seven-story steel braced frame under far-field and near-fault earthquakes: loading protocol and seismic test of high-strength steel H-shaped columns. International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake.Taipei, Taiwan, September 15-19, 2019.
Chou, C. C., Lin, T. H., Lai, Y. C., Xiong, H. C., Uang, C. M., El-Tawil, S., McCormick, J. P., and Mosqueda, G. (2019). US-TAIWAN collaborative research on steel column through cyclic testing of two story subassemblages. International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake.Taipei, Taiwan, September 15-19, 2019.
Lin, B. Z., Yu, Y. J., Chuang, M. C., Tsai, K. C. (2009). PISA3D Standard Edition R3.0 User’s Manual. National Center for Research on Earthquake Engineering, Taiwan Department of Civil Engineering, National Taiwan University, June, 2009.
Chou, C. C., and Wu, S. C. (2019). Cyclic lateral load test andfinite element analysis of high-strength concrete-filled steel box columns under high axial compression. Engineering Structures 189 (2019) 89-99.
Sediek, O. A., Wu T. Y., McCormick J., and El-Tawil S. (2019). Seismic behavior of HSS columns under lateral loading. International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake.Taipei, Taiwan, September 15-19, 2019.
Sediek, O. A., Wu T. Y., McCormick J., and El-Tawil S. (2020). Collapse Behavior of Hollow Structural Section Columns under Combined Axial and Lateral Loading. Journal of Structural Engineering, 2020, 146(6): 04020094
Chou, C. C., Chen, G. W. (2020). Lateral Cyclic Testing and Backbone Curve Development of High-Strength Steel Built-Up Box Columns Under Axial Compression. Engineering Structures (accepted)
內政部營建署「鋼結構及線設計法規範及解說」,2010年改訂
林柏州,「物件導向非線性靜動態三維結構分析程式之開發」,碩士論文,國立台灣大學土木工程系,民國92年
吳松城,「高強度混凝土充填箱型鋼柱於大軸力之耐震行為」,碩士論文,國立台灣大學土木工程系,民國104年
陳冠維,「高強度鋼箱型柱之耐震試驗與背骨曲線發展」,碩士論文,國立台灣大學土木工程系,民國108年
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17021-
dc.description.abstract本文延續陳冠維 (2019)的研究,將其研究中寬厚比b/t不同的兩組空心箱型鋼柱(HBC)試體縮尺50%後放入兩層樓子構架中於固定軸力下進行反覆側向載重,觀察整體構架與各桿件的行為,並將構架中一樓柱的行為與兩端都完全束制其旋轉自由度(Fixed-Fixed)的單柱實驗結果比較,探討箱型鋼柱於不同邊界條件下差異。實驗結果顯示當抗彎構架進入非線性後,其彎矩重新分布的趨勢會造成規範對於結構低樓層中強柱弱梁的保護機制失效,使結構發生不理想的破壞機制。此外也發現鋼柱於構架中的最大彎矩會略大於雙曲率單柱實驗的結果,而最大強度前塑性轉角雖然因為實驗條件略有差異(載重歷時不同)需要進一步實驗驗證,但鋼柱的最大強度前塑性轉角於構架中並不會比雙曲率單柱實驗的結果差,顯示目前使用雙曲率單柱實驗的結果來進行結構設計是安全,甚至可能較為保守的。
本研究也比較國內外規範與研究在預測箱型鋼柱背骨曲線上的差異,並與實驗結果比較,結果顯示ASCE-41與NIST對箱型鋼柱在大軸力下其最大彎矩的預測都非常保守,而Chou and Chen (2020)提出的預測公式則能反映箱型鋼柱在大軸力下最大彎矩遠大於降伏彎矩的現象。
同時研究中也使用非線性結構分析軟體(PISA3D)建立實驗子構架試體的結構分析模型並將預測之背骨曲線放入桿件內,比較模擬與實驗結果的差異,模擬結果顯示使用PISA3D中的Fracture Material搭配Chou and Chen (2020)提出的背骨曲線預測公式可有效模擬箱型鋼柱子構架整體的行為。
zh_TW
dc.description.abstractThis study continued Chou and Chen's work in 2019. Two of their steel hollow box column (HBC) specimens, with different width-to thickness (b/t) ratio, were 50% scaled down and placed into a two-story subassemblage of moment frame respectively. The subassemblages were tested under 40% axial load and displacement-control cyclic loading. The behaviors of overall subassemblage and their members were examined, and were compared with those in Chou and Chen's research to show the effect of different boundary conditions on steel columns.
Experimental results showed that after the subassemblages went in to nonlinear phase, the moment redistribution tended to increase the moment in column bottom of lower floors, while the moment in column top would keep constant or even decrease despite the column top were not yet yielding. This phenomenon might result in column bottom in lower floors of moment frames which were designed complying the strong column-weak beam rules given by AISC yielding, causing undesirable mechanisms.
Experimental results also indicated that the ultimate moment strength of steel box columns in moment frames is slightly higher than that in common-seen isolated column tests. And the pre-peak plastic rotation of steel box columns in moment frames is showed to be not less than that in isolated column test, indicating that the current method of using plastic behaviors of isolated columns test is appropriate and safe.
This study also compared methods for prediction of backbone curves provided by codes and studies around the world, showing that the formulas developed by Chou and Chen (2020) is the only method that can predict maximum moment well for hollow box columns under large axial load.
The predicted backbone curves of columns were converted into material properties in nonlinear structural analysis software (PISA3D) to model the test specimens in this study.The results showed that the method mentioned above could simulate the behaviors of steel box column moment-resisting frame well.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:53:27Z (GMT). No. of bitstreams: 1
U0001-0708202015500100.pdf: 24755267 bytes, checksum: 760afd948f574f813ac71e02345f9b70 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 ii
致謝 iv
摘要 v
ABSTRACT vi
目錄 viii
表目錄 xi
圖目錄 xiii
照片目錄 xviii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 4
1.4 研究方法 5
1.5 研究架構 5
第二章 試體設計與實驗規畫 6
2.1 試體規劃與設計 6
2.1.1 柱試體 6
2.1.2 梁試體與梁柱接合 8
2.1.3 外圍夾具 10
2.2 測試系統 11
2.2.1 實驗配置 11
2.2.2 側撐系統 14
2.2.3 實驗控制與載重歷時 16
2.3 量測系統 17
2.3.1 應變計 17
2.3.2 NDI 17
2.3.3 MOCAP 18
2.3.4 Dial Gauge、Tempo與PI Guage 18
2.4 材料性質 19
第三章 實驗結果分析與討論 20
3.1 實驗觀察 20
HBC-12-S 20
HBC-16-S 21
3.2 試體行為分析 22
3.2.1 制動器遲滯曲線 22
3.2.2 構架整體變形 24
3.2.3 桿件遲滯曲線 25
3.2.4柱彎矩分布與反曲點位置 25
3.2.5 軸向應變反應 28
3.2.6 柱底挫屈反應 30
3.2.7 小結 31
3.3 比較不同邊界條件之柱試體反應 32
3.3.1 遲滯曲線 32
3.3.2 變形曲線 34
3.3.3 軸向應變 36
3.3.4 柱底挫屈 37
3.3.5 小結 38
第四章 背骨曲線預測公式與試驗結果比較 40
4.1 預測公式比較 40
4.1.1 ASCE-41 (2013) 40
4.1.2 ASCE-41 (2017) 41
4.1.3 NIST (2017) 42
4.1.4 Chou and Chen (2020) 43
4.1.5 各規範間的比較 44
4.2 預測公式與試驗結果比較 45
4.2.1 試驗結果與各規範之背骨曲線比較 45
4.2.2 試驗結果與修正彈性勁度後之背骨曲線比較 46
第五章 PISA3D模型建立與分析 48
5.1 背骨曲線於非線性結構分析的運用 48
5.1.1 模擬材料介紹 48
5.1.2 單柱模型之建立與分析結果 51
5.2 本研究子構架之模擬 54
5.2.1 實驗之子構架模型建立 54
5.2.2 材料參數選擇 56
5.2.3 構架模擬結果與實驗比較 57
5.2.4 魚骨模型 59
5.2.5 本試驗之魚骨模型建立與分析結果比較 61
5.2.6 重現實驗中梁斷裂的情形 63
第六章 結論與建議 65
6.1 結論 65
6.2建議 68
參考文獻 69
dc.language.isozh-TW
dc.subject空心箱型鋼柱zh_TW
dc.subject非線性分析zh_TW
dc.subject背骨曲線zh_TW
dc.subject耐震行為zh_TW
dc.subject梁柱抗彎構架zh_TW
dc.subjectNonlinear analysisen
dc.subjectBackbone curveen
dc.subjectSeismic behavioren
dc.subjectMoment-resisting frameen
dc.subjectHollow box steel columnen
dc.title兩層樓子構架高強度箱型鋼柱耐震試驗與模擬分析zh_TW
dc.titleSeismic Tests and Analyses of Two-Story Subassemblages With a High-Strength Steel Box Columnen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee汪家銘(Chia-Ming Uang),蔡克銓(Keh-Chyuan Tsai),陳誠直(Cheng-Chih Chen),吳東諭(Tung-Yu Wu)
dc.subject.keyword空心箱型鋼柱,梁柱抗彎構架,耐震行為,背骨曲線,非線性分析,zh_TW
dc.subject.keywordHollow box steel column,Moment-resisting frame,Seismic behavior,Backbone curve,Nonlinear analysis,en
dc.relation.page162
dc.identifier.doi10.6342/NTU202002644
dc.rights.note未授權
dc.date.accepted2020-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0708202015500100.pdf
  未授權公開取用
24.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved