請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17014完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李伯訓 | |
| dc.contributor.author | Jing-Syuan Huang | en |
| dc.contributor.author | 黃靜宣 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:53:10Z | - |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-10-29 | |
| dc.identifier.citation | 1. Little, R.M., Stability and relapse of dental arch alignment. British Journal of Orthodontics, 1990. 17: p. 235-241.
2. Hawley, C.A., A removable retainer. International Journal of Orthodontia and Oral Surgery, 1919. 5: p. 291-305. 3. Eichenauer, J., Serbesis, C., and Ruf, S., Cleaning removable orthodontic appliances - a survey. Journal of Orofacial Orthopedics-Fortschritte Der Kieferorthopadie, 2011. 72: p. 389-395. 4. Lessa, F.C.R., Enoki, C., Ito, I.Y., Faria, G., Matsumoto, M.A.N., and Nelson-Filho, P., In-vivo evaluation of the bacterial contamination and disinfection of acrylic baseplates of removable orthodontic appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 2007. 132: p. 705.e11-705.e17. 5. Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W., Biofilms as complex differentiated communities. Annual Review of Microbiology, 2002. 56: p. 187-209. 6. Arciola, C.R., Campoccia, D., Speziale, P., Montanaro, L., and Costerton, J.W., Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012. 33: p. 5967-5982. 7. Kidd, E. and Fejerskov, O., What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. Journal of Dental Research, 2004. 83: p. 35-38. 8. Featherstone, J.D.B., The Continuum of Dental Caries—Evidence for a Dynamic Disease Process. Journal of Dental Research, 2004. 83: p. 39-42. 9. Davies, D.G. and Geesey, G.G., Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Applied and Environmental Microbiology, 1995. 61: p. 860-867. 10. Liu, Y., Yang, C.H., and Li, J., Influence of extracellular polymeric substances on Pseudomonas aeruginosa transport and deposition profiles in porous media. Environmental Science and Technology, 2007. 41: p. 198-205. 11. Tortora, G.J., Funke, B.R., and Case, C.L., Microbiology an introduction. Pearson Education, 2008. p. 76-112. 12. Pommerville, J.C., Alcamo's Fundamentals of Microbiology. Jones and Bartlett Publisher, 2010. p. 97-130. 13. Hamada, S. and Slade, H.D., Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Review, 1980. 44: p. 331-384. 14. Horaud, T. and Delbos, F., Viridans streptococci in infective endocarditis: species distribution and susceptibility to antibiotics. European Heart Journal, 1984. 5: p. 39-44. 15. Mugabe, C., Halwani, M., Azghani, A.O., Lafrenie, R.M., and Omri, A., Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2006. 50: p. 2016-2022. 16. Masaadeh, H.A., Hayajneh, W.A., and Momani, N.M., Microbial Ecology of Dental Plaques of Jordanian Patients and Inhibitory Effects of Allium sativum and Allium cepa L. Extracts. Journal of Medical Sciences, 2006. 6: p. 650-653. 17. Zeng, W.R., Li, S.F., and Chow, W.K., Preliminary studies on burning behavior of polymethylmethacrylate (PMMA). Journal of Fire Sciences, 2002. 20: p. 297-317. 18. Lien, S.M., Li, W.T., and Huang, T.J., Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Materials Science and Engineering C-Biomimetic and Supramolecular Systems, 2008. 28: p. 36-43. 19. Saldarriaga Fernandez, I.C., van der Mei, H.C., Lochhead, M.J., Grainger, D.W., and Busscher, H.J., The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials, 2007. 28: p. 4105-4112. 20. Waterhouse, A., Yin, Y., Wise, S.G., Bax, D.V., McKenzie, D.R., Bilek, M.M., Weiss, A.S., and Ng, M.K., The immobilization of recombinant human tropoelastin on metals using a plasma-activated coating to improve the biocompatibility of coronary stents. Biomaterials, 2010. 31: p. 8332-8340. 21. Nakayama, Y., Yamaoka, S., Nemoto, Y., Alexey, B., and Uchida, K., Thermoresponsive Heparin Bioconjugate as Novel Aqueous Antithrombogenic Coating Material. Bioconjugate Chemistry, 2011. 22: p. 193-199. 22. Nejadnik, M.R., van der Mei, H.C., Norde, W., and Busscher, H.J., Bacterial adhesion and growth on a polymer brush-coating. Biomaterials, 2008. 29: p. 4117-4121. 23. Weber, N., Wendel, H.P., and Ziemer, G., Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption. Biomaterials, 2002. 23: p. 429-439. 24. Klement, P., Du, Y.J., Berry, L., Andrew, M., and Chan, A.K.C., Blood-compatible biomaterials by surface coating with a novel antithrombin–heparin covalent complex. Biomaterials, 2002. 23: p. 527-535. 25. You, I., Kang, S.M., Byun, Y., and Lee, H., Enhancement of blood compatibility of poly(urethane) substrates by mussel-inspired adhesive heparin coating. Bioconjugate Chemistry, 2011. 22: p. 1264-1269. 26. West, S.L., Salvage, J.P., Lobb, E.J., Armes, S.P., Billingham, N.C., Lewis, A.L., Hanlon, G.W., and Lloy, A.W., The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials, 2004. 25: p. 1195-1204. 27. Chin-Quee, S.L., Hsu, S.H., Nguyen-Ehrenreich, K.L., Tai, J.T., Abraham, G.M., Pacetti, S.D., Chan, Y.F., Nakazawa, G., Kolodgie, F.D., Virmani, R., Ding, N.N., and Coleman, L.A., Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings. Biomaterials, 2010. 31: p. 648-657. 28. Berrocal, M.J., Johnson, R.D., Badr, I.H.A., Liu, M.D., Gao, D.Y., and Bachas, L.G., Improving the blood compatibility of ion-selective electrodes by employing poly(MPC-co-BMA), a copolymer containing phosphorylcholine, as a membrane coating. Analytical Chemistry, 2002. 74: p. 3644-3648. 29. Tanaka, M., Mochizuki, A., Ishii, N., Motomura, T., and Hatakeyama, T., Study of blood compatibility with poly(2-methoxyethyl acrylate). Relationship between water structure and platelet compatibility in poly(2-methoxyethylacrylate-co-2-hydroxyethylmethacrylate). Biomacromolecules, 2002. 3: p. 36-41. 30. Rossi, N.A., Mustafa, I., Jackson, J.K., Burt, H.M., Horte, S.A., Scott, M.D., and Kizhakkedathu, J.N., In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators. Biomaterials, 2009. 30: p. 638-648. 31. Venkataraman, S., Zhang, Y., Liu, L., and Yang, Y.Y., Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials, 2010. 31: p. 1751-1756. 32. Gao, G., Lange, D., Hilpert, K., Kindrachuk, J., Zou, Y., Cheng, J.T., Kazemzadeh-Narbat, M., Yu, K., Wang, R., Straus, S.K., Brooks, D.E., Chew, B.H., Hancock, R.E., and Kizhakkedathu, J.N., The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials, 2011. 32: p. 3899-3909. 33. Marsh, L.H., Alexander, C., Coke, M., Dettmar, P.W., Havler, M., Nevell, T.G., Smart, J.D., Timmins, B., and Tsibouklis, J., Adsorbed pluronics on the skin of human volunteers: effects on bacterial adhesion. International Journal of Pharmaceutics, 2003. 251: p. 155-163. 34. Tai, Y.C., Joshi, P., McGuire, J., and Neff, J.A., Nisin adsorption to hydrophobic surfaces coated with the PEO-PPO-PEO triblock surfactant Pluronic F108. Journal of Colloid and Interface Science, 2008. 322: p. 112-118. 35. Holmberg, K., Bergstrom, K., Brink, C., Osterberg, E., Tiberg, F., and Harris, J.M., Effects on protein adsorption, bacterial adhesion and contact-angle of grafting peg chains to polystyrene. Journal of Adhesion Science and Technology, 1993. 7: p. 503-517. 36. Harris, L.G., Tosatti, S., Wieland, M., Textor, M., and Richards, R.G., Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials, 2004. 25: p. 4135-4148. 37. Wei, Y.L., Chen, Y.S., Liu, P., Gao, Q., Sun, Y., and Huang, C.Z., Surface modification of hydrophobic PMMA intraocular lens by the immobilization of hydroxyethyl methacrylate for improving application in ophthalmology. Plasma Chemistry and Plasma Processing, 2011. 31: p. 811-825. 38. Chappard, D., Laurent, J.L., Camps, M., and Montheard, J.P., A simple and reliable method for purifying glycol methacrylate for histopathological studies. Acta Histochemica, 1982. 71: p. 95-102. 39. Chappard, D., Alexandre, C., Palle, S., Montheard, J.P., and Riffat, G., Improved stability of a purified glycol methacrylate preparation: comments. Stain Technology, 1986. 61: p. 185-186. 40. Horak, D., Cervinka, M., and Puza, V., Hydrogels in endovascular embolization. VI. Toxicity tests of poly(2-hydroxyethyl methacrylate) particles on cell cultures. Biomaterials, 1997. 18: p. 1355-1359. 41. Lesny, P., De Croos, J., Pradny, M., Vacik, J., Michalek, J., Woerly, S., and Sykova, E., Polymer hydrogels usable for nervous tissue repair. Journal of Chemical Neuroanatomy, 2002. 23: p. 243-247. 42. Mabilleau, G., Moreau, M.F., Filmon, R., Basle, M.F., and Chappard, D., Biodegradability of poly (2-hydroxyethyl methacrylate) in the presence of the J774.2 macrophage cell line. Biomaterials, 2004. 25: p. 5155-5162. 43. Schweikl, H., Spagnuolo, G., and Schmalz, G., Genetic and cellular toxicology of dental resin monomers. Journal of Dental Research, 2006. 85: p. 870-877. 44. Schwengberg, S., Bohlen, H., Kleinsasser, N., Kehe, K., Seiss, M., Walther, U.I., Hickel, R., and Reichl, F.X., In vitro embryotoxicity assessment with dental restorative materials. Journal of Dentistry, 2005. 33: p. 49-55. 45. Kwon, O.H., Nho, Y.C., and Lee, Y.M., Radiation-induced copolymerization of 2-hydroxyethyl methacrylate and polyethylene glycol methacrylate, and its protein adsorption and bacterial attachment. Journal of Industrial and Engineering Chemistry, 2003. 9: p. 138-145. 46. D’Ercole, S., Giulio, M.D., Grande, R., Campli, E.D., Bartolomeo, S.D., Piccolomini, R., and Cellini, L., Effect of 2-hydroxyethyl methacrylate on Streptococcus spp. biofilms. Letters in Applied Microbiology, 2011. 52: p. 193-200. 47. Worthley, C.H., Constantopoulos, K.T., Ginic-Markovic, M., Pillar, R.J., Matisons, J.G., and Clarke, S., Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance. Journal of Membrane Science, 2011. 385: p. 30-39. 48. Zhao, C., Li, L.Y., Wang, Q.M., Yu, Q.M., and Zheng, J., Effect of Film Thickness on the Antifouling Performance of Poly(hydroxy-functional methacrylates) Grafted Surfaces. Langmuir, 2011. 27: p. 4906-4913. 49. Bozukova, D., Pagnoulle, C., De Pauw-Gillet, M.C., Desbief, S., Lazzaroni, R., Ruth, N., Jerome, R., and Jerome, C., Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Biomacromolecules, 2007. 8: p. 2379-2387. 50. Xu, Z.K., Nie, F.Q., Qu, C., Wan, L.S., Wu, J., and Yao, K., Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials, 2005. 26: p. 589-598. 51. Zhang, L.H., Wu, D., Chen, Y.S., Wang, X.L., Zhao, G.W., Wan, H.Y., and Huang, C.Z., Surface modification of polymethyl methacrylate intraocular lenses by plasma for improvement of antithrombogenicity and transmittance. Applied Surface Science, 2009. 255: p. 6840-6845. 52. Fisher, A.A., Immediate and delayed allergic contact reactions to polyethylene glycol. Contact Dermatitis, 1978. 4: p. 135-138. 53. West, J.L. and Hubbell, J.A., Photopolymerized Hydrogel Materials for Drug-Delivery Applications. Reactive Polymers, 1995. 25: p. 139-147. 54. Jeon, S.I., Lee, J.H., Andrade, J.D., and Degennes, P.G., Protein Surface Interactions in the Presence of Polyethylene Oxide .1. Simplified Theory. Journal of Colloid and Interface Science, 1991. 142: p. 149-158. 55. Lin, L., Wang, Y., Huang, X.D., Xu, Z.K., and Yao, K., Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach. Applied Surface Science, 2010. 256: p. 7354-7364. 56. Sheu, M.S., Hoffman, A.S., and Feijen, J., A glow-discharge treatment to immobilize poly(ethylene oxide) poly(propylene oxide) surfactants for wettable and nonfouling biomaterials. Journal of Adhesion Science and Technology, 1992. 6: p. 995-1009. 57. Lens, J.P., Harmsen, P.F.H., TerSchegget, E.M., Terlingen, J.G.A., Engbers, G.H.M., and Feijen, J., Immobilization of functionalized alkyl-poly(ethylene oxide) surfactants on poly(ethylene) surfaces by means of an argon plasma treatment. Journal of Biomaterials Science-Polymer Edition, 1997. 8: p. 963-982. 58. Lee, J.H., Jeong, B.J., and Lee, H.B., Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces. Journal of Biomedical Materials Research, 1997. 34: p. 105-114. 59. Gombotz, W.R., Wang, G.H., Horbett, T.A., and Hoffman, A.S., Protein adsorption to poly(ethylene oxide) surfaces. Journal of Biomedical Materials Research, 1991. 25: p. 1547-1562. 60. Jo, S. and Park, K., Surface modification using silanated poly(ethylene glycol)s. Biomaterials, 2000. 21: p. 605-616. 61. Tedjo, C., Neoh, K.G., Kang, E.T., Fang, N., and Chan, V., Bacteria-surface interaction in the presence of proteins and surface attached poly(ethylene glycol) methacrylate chains. Journal of Biomedical Materials Research. Part A, 2007. 82: p. 479-491. 62. Nie, N., Q, T., Wang, J., Chao, F., Liu, R., Zhang, Y., Liu, W., and Wang, J., Synthesis of copolymers using dendronized polyethylene glycol and assay of their blood compatibility and antibacterial adhesion activity. Colloids and Surfaces B: Biointerfaces, 2012. 97: p. 226–235. 63. Weia, J., Ravnb, D.B., Gramb, L., and Kingshotta, P., Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion. Colloids and Surfaces B: Biointerfaces, 2003. 32: p. 275-291. 64. Taylor, R., Maryan, C., and Verran, J., Retention of oral microorganisms on cobalt-chromium alloy and dental acrylic resin with different surface finishes. Journal of Prosthetic Dentistry, 1998. 80: p. 592-597. 65. Bruinsma, G.M., Rustema-Abbing, M., de Vries, J., Busscher, H.J., van der Linden, M.L., Hooymans, J.M., and van der Mei, H.C., Multiple surface properties of worn RGP lenses and adhesion of Pseudomonas aeruginosa. Biomaterials, 2003. 24: p. 1663-1670. 66. Ivanova, E.P., Truong, V.K., Webb, H.K., Baulin, V.A., Wang, J.Y., Mohammodi, N., Wang, F., Fluke, C., and Crawford, R.J., Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Scientific Reports, 2011. 1: p. 165. 67. Giraldez, M.J., Resua, C.G., Lira, M., Oliveira, M.E., Magarinos, B., Toranzo, A.E., and Yebra-Pimentel, E., Contact lens hydrophobicity and roughness effects on bacterial adhesion. Optometry and Vision Science 2010. 87: p. E426-431. 68. Gong, S.Q., Epasinghe, J., Rueggeberg, F.A., Niu, L.N., Mettenberg, D., Yiu, C.K., Blizzard, J.D., Wu, C.D., Mao, J., Drisko, C.L., Pashley, D.H., and Tay, F.R., An ORMOSIL-containing orthodontic acrylic resin with concomitant improvements in antimicrobial and fracture toughness properties. PLoS One, 2012. 7: p. e42355. 69. Kingshott, P., Thissen, H., and Griesser, H.J., Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials, 2002. 23: p. 2043-2056. 70. Kizilel, S., Perez-Luna, V.H., and Teymour, F., Photopolymerization of poly(ethylene glycol) diacrylate on eosin-functionalized surfaces. Langmuir : the ACS journal of surfaces and colloids, 2004. 20: p. 8652-8658. 71. Sharma, S., Johnson, R.W., and Desai, T.A., XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosensors and Bioelectronics, 2004. 20: p. 227-239. 72. Mehdizadeh, M., Weng, H., Gyawali, D., Tang, L.P., and Yang, J., Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials, 2012. 33: p. 7972-7983. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17014 | - |
| dc.description.abstract | 矯正活動維持器(Retainer)配戴者,有較高的風險被口腔中細菌和真菌感染,且細菌和真菌會貼附於維持器上形成生物膜。細菌貼附於維持器表面時,會因為維持器的物理或化學性質,如粗糙度與疏水性等影響。一旦貼附上去,細菌和真菌會不斷堆積,於維持器上形成生物膜,導致牙齒齲齒和牙周病等。
生醫材料中高分子材料對於表面改質,扮演非常重要的角色。生醫材料的表面性質,如:官能基、表面粗糙度和親疏水性等,都控制著細菌及細胞對材料表面貼附性的影響與聚合物材料的生物相容性。 本論文我們將研究各種表面改質方法和材料,針對牙科矯正活動維持器的基材聚甲基丙烯酸甲酯(Polymethyl methacrylate, PMMA)。改質的方法包括:加熱法[2-甲基丙烯酸羥基乙酯(2-Hydroxyethyl methacrylate, HEMA)]及電漿接枝[聚乙二醇異丁烯酸(Polyethylene glycol methacrylate, PEGMA)與聚乙二醇雙丙烯酸酯(Polyethylene glycol diacrylate, PEGDA)]進行表面處理,分成表面平滑組與粗糙組,探討基材表面改質後對抗細菌貼附影響情形。藉由超親水矽膠與超疏水鐵氟龍試片,比較親疏水性跟改質的PMMA試片,其親疏水性對細菌的貼附影響。 藉由傅立葉轉換紅外線光譜儀(FTIR)、X射線電子光譜儀(XPS)、接觸角(Contact angle)、微細形狀測定機(Surfcorder)與掃瞄式電子電子顯微鏡(SEM),分析接枝後表面官能基、親疏水性、粗糙度和形態改變。 比較不同材質的親疏水性和表面粗糙度的試片,對於革蘭氏陽性菌轉糖鏈球菌(S. mutans)與革蘭氏陰性菌大腸桿菌(E. coli)的貼附影響。生物相容性評估使用人類牙齦纖維細胞(Human gingival fibroblasts, HGF)採用MTT法檢測細胞活性測試。 結果顯示,藉由HEMA修飾疏水性PMMA表面,可以減少細菌的貼附和親水性。特別是PMMA-HEMA不論是平滑或粗糙面,都有效減少細菌貼附。排除PMMA-HEMA粗糙度與超親疏水才能抗細菌的原因,其原因可能是對細菌表面造成影響。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:53:10Z (GMT). No. of bitstreams: 1 ntu-102-R00450006-1.pdf: 5380044 bytes, checksum: 6339f411300d84cfccd8cb643a45aba8 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract V 目錄 VII 表目錄 XI 圖目錄 XII 第一章 前言 1 第二章 文獻回顧 2 2.1 臨床牙科齒顎矯正定義 2 2.2 維持器功能 2 2.2.1 維持器不同種類與優缺點 3 2.2.2 維持器清潔方式的影響 4 2.3 生物膜(Biofilm) 5 2.3.1 生物膜的定義 5 2.3.2 生物膜的形成 5 2.4 口腔中導致齲齒的細菌 7 2.5 細菌性質之簡介 7 2.5.1 革蘭氏陽性菌細胞壁 7 2.5.2 革蘭氏陰性菌細胞壁 8 2.6 口腔中容易致病的細菌簡介以及所引起的疾病 9 2.6.1 轉糖鏈球菌(Streptococcus mutans) 9 2.6.2 大腸桿菌(Escherichia coli) 10 2.7 聚甲基丙烯酸甲酯(PMMA)材料介紹 11 2.8 表面改質原理 11 2.8.1 交聯反應(Cross-link reaction) 11 2.8.2 電漿反應(Plasma) 12 2.9 抗生物沾黏(Antifouling)材料 13 2.9.1 2-甲基丙烯酸羥乙酯(HEMA)介紹 15 2.9.2 聚乙二醇異丁烯酸(PEGMA)與聚乙二醇雙丙烯酸酯(PEGDA)介紹 17 2.10 表面粗糙度 20 第三章 實驗動機與目的 24 第四章 實驗材料與方法 26 4.1 實驗材料 26 4.2 實驗儀器 33 4.3 實驗流程圖 35 4.4 試片製作 36 4.4.1 製備聚甲基丙烯酸甲酯(PMMA) 36 4.4.2 試片接枝(HEMA、PEGMA與PEGDA) 37 4.4.3 超親水矽膠與鐵氟龍試片備製 45 4.5 分析試片表面接枝情況與表面粗糙度 47 4.5.1 場發射掃描式電子顯微鏡(FE-SEM) 47 4.5.2 微細形狀測定機(Surfcorder) 47 4.5.3 傅立葉轉換紅外線光譜儀(FT-IR) 48 4.5.4 X射線光電子光譜儀(XPS) 49 4.5.5 靜態表面接觸角分析儀(Contact angle) 49 4.5.6 酵素免疫分析自動判讀器(ELISA) 50 4.6 細菌實驗 50 4.6.1 菌株特性與來源資料與培養保存方法 50 4.6.2 細菌直接接觸法(Direct contact test)實驗抑制或殺菌 52 4.6.3 細菌貼附實驗 53 4.7 細胞實驗 56 4.7.1 細胞解凍 56 4.7.2 細胞培養與保存方法 56 4.7.3 細胞計數 57 4.7.4 生物相容性測試(MTT assay) 57 4.8 統計分析 59 第五章 實驗結果 60 5.1 傅立葉轉換紅外線光譜儀官能基分析(ATR-FTIR) 60 5.2 X射線光電子光譜儀分析(XPS) 65 5.3 靜態表面接觸角分析(Contact angle) 69 5.4 微細形狀測定機分析(Surfcorder)與場發射掃描式電子顯微鏡分析(Ultra-high resolution FE-SEM with low vacuum mode) 74 5.5 細菌酵素免疫分析自動判讀器分析(ELISA) 83 5.5.1 細菌生長曲線 83 5.5.2 細菌直接接觸法(Direct contact test)分析 84 5.5.3 細菌貼附實驗 86 5.6 細胞生物相容性測試(MTT assay) 96 第六章 討論 98 6.1 傅立葉轉換紅外線光譜儀官能基分析(ATR-FTIR) 98 6.2 X射線光電子光譜儀分析(XPS) 98 6.3 靜態表面接觸角分析(Contact angle) 99 6.4 微細形狀測定機分析(Surfcorder)與場發射掃描式電子顯微鏡分析(FE-SEM) 99 6.5 細菌直接接觸法(Direct contact test)分析 100 6.6 細菌貼附實驗 100 6.7 細胞生物相容性測試(MTT assay) 101 第七章 結論 103 參考文獻 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 變形鏈球菌和抗細菌貼附 | zh_TW |
| dc.subject | 2-甲基丙烯酸羥乙酯 | zh_TW |
| dc.subject | 親水性 | zh_TW |
| dc.subject | 粗糙度 | zh_TW |
| dc.subject | 聚甲基丙烯酸甲酯 | zh_TW |
| dc.subject | prevent bacteria adhesion | en |
| dc.subject | polymethyl methacrylate | en |
| dc.subject | 2-hydroxyethyl methacrylate | en |
| dc.subject | hydrophilic | en |
| dc.subject | roughness | en |
| dc.subject | S. mutans | en |
| dc.title | 2-甲基丙烯酸羥基乙酯表面接枝於聚甲基丙烯酸甲酯其抗菌貼附之研究 | zh_TW |
| dc.title | 2-Hydroxyethyl methacrylate grafting on poly(methyl methacrylate) to prevent bacteria adhesion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張哲政,周涵怡 | |
| dc.subject.keyword | 聚甲基丙烯酸甲酯,2-甲基丙烯酸羥乙酯,親水性,粗糙度,變形鏈球菌和抗細菌貼附, | zh_TW |
| dc.subject.keyword | polymethyl methacrylate,2-hydroxyethyl methacrylate,hydrophilic,roughness,S. mutans,prevent bacteria adhesion, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-10-30 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
