Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17008
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張明富(Ming-Fu Chang)
dc.contributor.authorLinda Tzu-Ling Tsengen
dc.contributor.author曾子玲zh_TW
dc.date.accessioned2021-06-07T23:52:57Z-
dc.date.copyright2014-02-25
dc.date.issued2013
dc.date.submitted2013-11-12
dc.identifier.citationAbel, E. D. (2004a). Glucose transport in the heart. Front. Biosci. 9, 201-15.
Abel, E. D. (2004b). Insulin signaling in heart muscle: lessons from genetically
engineered mouse models. Curr. Hypertens. Rep. 6, 416-23.
Abel, E. D., Kaulbach, H. C., Tian, R., Hopkins, J. C., Duffy, J., Doetschman, T.,
Minnemann, T., Boers, M. E., Hadro, E., Oberste-Berghaus, C. et al. (1999).
Cardiac hypertrophy with preserved contractile function after selective deletion of
GLUT4 from the heart. J. Clin. Invest. 104, 1703-14.
Backer, J. M., Shoelson, S. E., Haring, E. and White, M. F. (1991). Insulin receptors
internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an
intact juxtamembrane region. J. Cell Biol. 115, 1535-45.
Bairstow, S. F., Ling, K., Su, X., Firestone, A. J., Carbonara, C. and Anderson, R.
A. (2006). Type Igamma661 phosphatidylinositol phosphate kinase directly interacts
with AP2 and regulates endocytosis. J. Biol. Chem. 281, 20632-42.
Balbis, A., Baquiran, G., Mounier, C. and Posner, B. I. (2004). Effect of insulin on
caveolin-enriched membrane domains in rat liver. J Biol Chem 279, 39348-57.
Barger, P. M., Brandt, J. M., Leone, T. C., Weinheimer, C. J. and Kelly, D. P.
(2000). Deactivation of peroxisome proliferator-activated receptor-alpha during
cardiac hypertrophic growth. J. Clin. Invest. 105, 1723-30.
Baron, A. D. (1993). Cardiovascular actions of insulin in humans. Implications for
insulin sensitivity and vascular tone. Baillieres. Clin. Endocrinol. Metab. 7, 961-87.
Barth, A. S., Kuner, R., Buness, A., Ruschhaupt, M., Merk, S., Zwermann, L.,
Kaab, S., Kreuzer, E., Steinbeck, G., Mansmann, U. et al. (2006). Identification of a
common gene expression signature in dilated cardiomyopathy across independent
microarray studies. J. Am. Coll. Cardiol. 48, 1610-7.
82
Belke, D. D., Betuing, S., Tuttle, M. J., Graveleau, C., Young, M. E., Pham, M.,
Zhang, D., Cooksey, R. C., McClain, D. A., Litwin, S. E. et al. (2002). Insulin
signaling coordinately regulates cardiac size, metabolism, and contractile protein
isoform expression. J. Clin. Invest. 109, 629-39.
Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radziejewska, E.,
Morgenbesser, S. D., DePinho, R. A., Panayotatos, N., Cobb, M. H. and
Yancopoulos, G. D. (1991). ERKs: a family of protein-serine/threonine kinases that
are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65,
663-75.
Braz, J. C., Bueno, O. F., Liang, Q., Wilkins, B. J., Dai, Y. S., Parsons, S.,
Braunwart, J., Glascock, B. J., Klevitsky, R., Kimball, T. F. et al. (2003). Targeted
inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation
of calcineurin-NFAT signaling. J. Clin. Invest. 111, 1475-86.
Ceresa, B. P., Kao, A. W., Santeler, S. R. and Pessin, J. E. (1998). Inhibition of
clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal
transduction pathways. Mol. Cell Biol. 18, 3862-70.
Cheng, L., Ding, G., Qin, Q., Huang, Y., Lewis, W., He, N., Evans, R. M.,
Schneider, M. D., Brako, F. A., Xiao, Y. et al. (2004). Cardiomyocyte-restricted
peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty
acid oxidation and leads to cardiomyopathy. Nat. Med. 10, 1245-50.
Claycomb, W. C., Lanson, N. A., Jr., Stallworth, B. S., Egeland, D. B., Delcarpio,
J. B., Bahinski, A. and Izzo, N. J., Jr. (1998). HL-1 cells: a cardiac muscle cell line
that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc.
Natl. Acad. Sci. U S A 95, 2979-84.
Cocucci, E., Aguet, F., Boulant, S. and Kirchhausen, T. (2012). The first five
seconds in the life of a clathrin-coated pit. Cell 150, 495-507.
83
Condorelli, G., Drusco, A., Stassi, G., Bellacosa, A., Roncarati, R., Iaccarino, G.,
Russo, M. A., Gu, Y., Dalton, N., Chung, C. et al. (2002). Akt induces enhanced
myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl. Acad. Sci.
U S A 99, 12333-8.
Crackower, M. A., Oudit, G. Y., Kozieradzki, I., Sarao, R., Sun, H., Sasaki, T.,
Hirsch, E., Suzuki, A., Shioi, T., Irie-Sasaki, J. et al. (2002). Regulation of
myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell
110, 737-49.
Daub, H., Olsen, J. V., Bairlein, M., Gnad, F., Oppermann, F. S., Korner, R.,
Greff, Z., Keri, G., Stemmann, O. and Mann, M. (2008). Kinase-selective
enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.
Mol Cell 31, 438-48.
DeBosch, B. J. and Muslin, A. J. (2008). Insulin signaling pathways and cardiac
growth. J. Mol. Cell Cardiol. 44, 855-64.
Del Re, D. P., Matsuda, T., Zhai, P., Gao, S., Clark, G. J., Van Der Weyden, L.
and Sadoshima, J. (2010). Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts
is protective against pressure overload in mice. J. Clin. Invest. 120, 3555-67.
Eden, E. R., White, I. J., Tsapara, A. and Futter, C. E. (2010). Membrane contacts
between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor
interaction. Nat. Cell Biol. 12, 267-72.
Fagerholm, S., Ortegren, U., Karlsson, M., Ruishalme, I. and Stralfors, P. (2009).
Rapid insulin-dependent endocytosis of the insulin receptor by caveolae in primary
adipocytes. PLoS One 4, e5985.
Fang, K. M., Lee, A. S., Su, M. J., Lin, C. L., Chien, C. L. and Wu, M. L. (2008).
Free fatty acids act as endogenous ionophores, resulting in Na+ and Ca2+ influx and
myocyte apoptosis. Cardiovasc. Res. 78, 533-45.
84
Frangioni, J. V., Beahm, P. H., Shifrin, V., Jost, C. A. and Neel, B. G. (1992). The
nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic
reticulum via its 35 amino acid C-terminal sequence. Cell 68, 545-60.
Friehs, I., Moran, A. M., Stamm, C., Colan, S. D., Takeuchi, K., Cao-Danh, H.,
Rader, C. M., McGowan, F. X. and del Nido, P. J. (1999). Impaired glucose
transporter activity in pressure-overload hypertrophy is an early indicator of
progression to failure. Circulation 100, II187-93.
Haj, F. G., Verveer, P. J., Squire, A., Neel, B. G. and Bastiaens, P. I. (2002).
Imaging sites of receptor dephosphorylation by PTP1B on the surface of the
endoplasmic reticulum. Science 295, 1708-11.
Heineke, J. and Molkentin, J. D. (2006). Regulation of cardiac hypertrophy by
intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7, 589-600.
Henne, W. M., Boucrot, E., Meinecke, M., Evergren, E., Vallis, Y., Mittal, R. and
McMahon, H. T. (2010). FCHo proteins are nucleators of clathrin-mediated
endocytosis. Science 328, 1281-4.
Hsu, W. C., Tzen, K. Y., Huy, P. T., Duet, M. and Yeh, T. H. (2009). An animal
model of central auditory pathway imaging in the rat brain by high resolution small
animal positron emission tomography. Acta. Otolaryngol. 129, 423-8.
Huang, C., Jiang, J. Y., Chang, S. C., Tsay, Y. G., Chen, M. R. and Chang, M. F.
(2013). Nuclear export signal-interacting protein forms complexes with lamin
A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta
antigen. J Virol 87, 1596-604.
Jackson, L. P., Kelly, B. T., McCoy, A. J., Gaffry, T., James, L. C., Collins, B. M.,
Honing, S., Evans, P. R. and Owen, D. J. (2010). A large-scale conformational
change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor
complex. Cell 141, 1220-9.
85
Jose, M., Biosca, J. A., Trujillo, R. and Itarte, E. (1993). Characterization of the
hepatic insulin receptor undergoing internalization through clathrin-coated vesicles and
endosomes. FEBS Lett. 334, 286-8.
Kelly, B. T., McCoy, A. J., Spate, K., Miller, S. E., Evans, P. R., Honing, S. and
Owen, D. J. (2008). A structural explanation for the binding of endocytic dileucine
motifs by the AP2 complex. Nature 456, 976-979.
Kukulski, W., Schorb, M., Kaksonen, M. and Briggs, J. A. (2012). Plasma
Membrane Reshaping during Endocytosis Is Revealed by Time-Resolved Electron
Tomography. Cell 150, 508-20.
Laustsen, P. G., Russell, S. J., Cui, L., Entingh-Pearsall, A., Holzenberger, M.,
Liao, R. and Kahn, C. R. (2007). Essential role of insulin and insulin-like growth
factor 1 receptor signaling in cardiac development and function. Mol. Cell Biol. 27,
1649-64.
Lehman, J. J. and Kelly, D. P. (2002). Gene regulatory mechanisms governing
energy metabolism during cardiac hypertrophic growth. Heart Fail. Rev. 7, 175-85.
Lemmon, M. A. and Schlessinger, J. (2010). Cell signaling by receptor tyrosine
kinases. Cell 141, 1117-34.
Leto, D. and Saltiel, A. R. (2012). Regulation of glucose transport by insulin: traffic
control of GLUT4. Nat. Rev. Mol. Cell Biol. 13, 383-96.
Liang, Q., Bueno, O. F., Wilkins, B. J., Kuan, C. Y., Xia, Y. and Molkentin, J. D.
(2003). c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk
with calcineurin-NFAT signaling. EMBO J. 22, 5079-89.
Liao, A. H., Cheng, Y. C., Weng, C. H., Tsai, T. F., Lin, W. H., Yeh, S. H., Yeh, W.
C. and Li, P. C. (2008). Characterization of malignant focal liver lesions with
contrast-enhanced 40 MHz ultrasound imaging in hepatitis B virus X transgenic mice: a
feasibility study. Ultrason. Imaging 30, 203-16.
86
Lin, J. W., Ju, W., Foster, K., Lee, S. H., Ahmadian, G., Wyszynski, M., Wang, Y.
T. and Sheng, M. (2000). Distinct molecular mechanisms and divergent endocytotic
pathways of AMPA receptor internalization. Nat. Neurosci. 3, 1282-90.
Ling, H., Zhang, T., Pereira, L., Means, C. K., Cheng, H., Gu, Y., Dalton, N. D.,
Peterson, K. L., Chen, J., Bers, D. et al. (2009). Requirement for
Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced
cardiac hypertrophy to heart failure in mice. J. Clin. Invest. 119, 1230-40.
McCarthy, C. F., Fraser, I. D. and Read, A. E. (1966). Plasma lactate dehydrogenase
in megaloblastic anaemia. J. Clin. Pathol. 19, 51-4.
McMullen, J. R., Sherwood, M. C., Tarnavski, O., Zhang, L., Dorfman, A. L.,
Shioi, T. and Izumo, S. (2004). Inhibition of mTOR signaling with rapamycin
regresses established cardiac hypertrophy induced by pressure overload. Circulation
109, 3050-5.
Molkentin, J. D. (2004). Calcineurin-NFAT signaling regulates the cardiac
hypertrophic response in coordination with the MAPKs. Cardiovasc. Res. 63, 467-75.
Montessuit, C. and Thorburn, A. (1999). Transcriptional activation of the glucose
transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. J. Biol.
Chem. 274, 9006-12.
Motley, A., Bright, N. A., Seaman, M. N. and Robinson, M. S. (2003).
Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell. Biol. 162, 909-18.
Mudd, J. O. and Kass, D. A. (2008). Tackling heart failure in the twenty-first century.
Nature 451, 919-28.
Muniyappa, R., Montagnani, M., Koh, K. K. and Quon, M. J. (2007).
Cardiovascular actions of insulin. Endocr. Rev. 28, 463-91.
Murphy, J. E., Padilla, B. E., Hasdemir, B., Cottrell, G. S. and Bunnett, N. W.
(2009). Endosomes: a legitimate platform for the signaling train. Proc. Natl. Acad. Sci.
U. S. A. 106, 17615-22.
87
Ohno, H., Stewart, J., Fournier, M. C., Bosshart, H., Rhee, I., Miyatake, S., Saito,
T., Gallusser, A., Kirchhausen, T. and Bonifacino, J. S. (1995). Interaction of
tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872-5.
Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L.
J., Gnad, F., Cox, J., Jensen, T. S., Nigg, E. A. et al. (2010). Quantitative
phosphoproteomics reveals widespread full phosphorylation site occupancy during
mitosis. Sci. Signal 3, ra3.
Owen, D. J. and Evans, P. R. (1998). A structural explanation for the recognition of
tyrosine-based endocytotic signals. Science 282, 1327-32.
Ritter, B., Denisov, A. Y., Philie, J., Deprez, C., Tung, E. C., Gehring, K. and
McPherson, P. S. (2004). Two WXXF-based motifs in NECAPs define the specificity
of accessory protein binding to AP-1 and AP-2. EMBO J. 23, 3701-10.
Rutsch, F., Gailus, S., Miousse, I. R., Suormala, T., Sagne, C., Toliat, M. R.,
Nurnberg, G., Wittkampf, T., Buers, I., Sharifi, A. et al. (2009). Identification of a
putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12
metabolism. Nat. Genet. 41, 234-9.
Saltiel, A. R. and Kahn, C. R. (2001). Insulin signalling and the regulation of glucose
and lipid metabolism. Nature 414, 799-806.
Schafers, K. P., Stegger, L., Barnard, C., Kriens, M., Hermann, S., Schober, O.
and Schafers, M. (2005). ECG-triggered high-resolution positron emission
tomography: a breakthrough in cardiac molecular imaging of mice. Eur. J. Nucl. Med.
Mol. Imaging 32, 383.
Shimizu, I., Minamino, T., Toko, H., Okada, S., Ikeda, H., Yasuda, N., Tateno, K.,
Moriya, J., Yokoyama, M., Nojima, A. et al. (2010). Excessive cardiac insulin
signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J.
Clin. Invest. 120, 1506-14.
88
Shioi, T., McMullen, J. R., Tarnavski, O., Converso, K., Sherwood, M. C.,
Manning, W. J. and Izumo, S. (2003). Rapamycin attenuates load-induced cardiac
hypertrophy in mice. Circulation 107, 1664-70.
Shiojima, I., Sato, K., Izumiya, Y., Schiekofer, S., Ito, M., Liao, R., Colucci, W. S.
and Walsh, K. (2005). Disruption of coordinated cardiac hypertrophy and
angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108-18.
Su, M. J., Chang, G. J., Wu, M. H. and Kuo, S. C. (1997). Electrophysiological basis
for the antiarrhythmic action and positive inotropy of HA-7, a furoquinoline alkaloid
derivative, in rat heart. Br. J. Pharmacol. 122, 1285-98.
Sylvius, N., Tesson, F., Gayet, C., Charron, P., Benaiche, A., Peuchmaurd, M.,
Duboscq-Bidot, L., Feingold, J., Beckmann, J. S., Bouchier, C. et al. (2001). A new
locus for autosomal dominant dilated cardiomyopathy identified on chromosome
6q12-q16. Am. J. Hum. Genet. 68, 241-6.
Taegtmeyer, H., Wilson, C. R., Razeghi, P. and Sharma, S. (2005). Metabolic
energetics and genetics in the heart. Ann. N. Y. Acad. Sci. 1047, 208-18.
Tosoni, D., Puri, C., Confalonieri, S., Salcini, A. E., De Camilli, P., Tacchetti, C.
and Di Fiore, P. P. (2005). TTP specifically regulates the internalization of the
transferrin receptor. Cell 123, 875-88.
Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., Heim,
M. H. and Stoffel, M. (2011). MicroRNAs 103 and 107 regulate insulin sensitivity.
Nature 474, 649-53.
Traub, L. M. (2009). Tickets to ride: selecting cargo for clathrin-regulated
internalization. Nat. Rev. Mol. Cell Biol. 10, 583-96.
Walker, P. S., Ramlal, T., Sarabia, V., Koivisto, U. M., Bilan, P. J., Pessin, J. E.
and Klip, A. (1990). Glucose transport activity in L6 muscle cells is regulated by the
coordinate control of subcellular glucose transporter distribution, biosynthesis, and
mRNA transcription. J. Biol. Chem. 265, 1516-23.
89
Wang, Y. H., Chang, S. C., Huang, C., Li, Y. P., Lee, C. H. and Chang, M. F.
(2005). Novel nuclear export signal-interacting protein, NESI, critical for the assembly
of hepatitis delta virus. J. Virol. 79, 8113-20.
Ward, C. W., Lawrence, M. C., Streltsov, V. A., Adams, T. E. and McKern, N. M.
(2007). The insulin and EGF receptor structures: new insights into ligand-induced
receptor activation. Trends Biochem. Sci. 32, 129-37.
Warren, R. A., Green, F. A. and Enns, C. A. (1997). Saturation of the endocytic
pathway for the transferrin receptor does not affect the endocytosis of the epidermal
growth factor receptor. J. Biol. Chem. 272, 2116-21.
Woods, A. J., Roberts, M. S., Choudhary, J., Barry, S. T., Mazaki, Y., Sabe, H.,
Morley, S. J., Critchley, D. R. and Norman, J. C. (2002). Paxillin associates with
poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of
migrating cells. J. Biol. Chem. 277, 6428-37.
Wu, X., Zhang, T., Bossuyt, J., Li, X., McKinsey, T. A., Dedman, J. R., Olson, E.
N., Chen, J., Brown, J. H. and Bers, D. M. (2006). Local InsP3-dependent
perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J. Clin.
Invest. 116, 675-82.
Zhang, C. L., McKinsey, T. A., Chang, S., Antos, C. L., Hill, J. A. and Olson, E. N.
(2002). Class II histone deacetylases act as signal-responsive repressors of cardiac
hypertrophy. Cell 110, 479-88.
Zisman, A., Peroni, O. D., Abel, E. D., Michael, M. D., Mauvais-Jarvis, F., Lowell,
B. B., Wojtaszewski, J. F., Hirshman, M. F., Virkamaki, A., Goodyear, L. J. et al.
(2000). Targeted disruption of the glucose transporter 4 selectively in muscle causes
insulin resistance and glucose intolerance. Nat. Med. 6, 924-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17008-
dc.description.abstract細胞內的能量恆定調節是維繫細胞正常生理的重要因素,而這能量的恆定調
節的失衡則是導致許多疾病發生的開端。lmbrd1 基因所表達出的LMBD1 蛋白質
是一包含九個預測穿膜結構的膜蛋白質。最近的研究顯示細胞內溶酶體中維他命
B12 的細胞質輸出作用與 lmbrd1 基因的對位雙變異有密切關係,會造成病人的
維生素B12 利用缺乏症,導致新生兒許多早期病理症狀。在本研究中,發現只
要有一 lmbrd1 基因對位的變異,便會導致非維生素B12 利用缺乏相關的心臟疾
病。利用 lmbrd1 基因對位單一變異(lmbrd +/-)的小鼠模式系統,發現 18FDG 在
心臟組織有大量累積,並對外加胰島素的再誘發作用,無明顯反映在額外的
18FDG 的增加累積。並發現在此 lmbrd1+/- 小鼠心臟的胰島素接受體是處於持續
活化的狀態,且心博與心肌收縮也異常增加。導致代償性的心肌肥大與局部受損
相關的纖維化病變。隨著lmbrd1+/-小鼠的老化,其心臟的左心室血液射出分率降
低,伴隨著心室功能的惡化。進一步利用初繼代培養大鼠心室細胞,進行 lmbrd1
基因的抑低表現調控,發現其胰島素受體的自身活化提升,並造成下游Akt 激
酶的活化也提升。以共軛焦螢光顯微鏡與活細胞全反射螢光顯微鏡的觀察結果,
發現 LMBD1 蛋白會與胰島素受體與clathrin 聚集在細胞膜同一位置,並會因胰
島素誘發胰島素受體的內吞作用時,同步一起進入細胞內。利用定點突變置換
LMBD1 蛋白質上可能的AP-2 結合位的胺基酸,結果發現 LMBD1 包含兩個與
胰島素受體細胞內吞作用調節有關的區段。綜合本研究的結果,此 lmbrd1 基因
所表達出的 LMBD1 蛋白會參與調節心臟中胰島素受體的細胞內吞作用,並與
其下游相關活性訊息傳遞調控相關,且從 lmbrd1+/- 小鼠模式系統發現,其對位
單一變異會導致心臟左心室心肌肥大及相關病變可能是與其調控胰島素受體細
胞內吞作用與其活性有密切關係。
zh_TW
dc.description.abstractEnergy homeostasis is crucial in maintaining normal biological functions of
cells. Disturbances in such balance often lead to various diseases. Limb region 1
(LMBR1) domain containing 1 gene (lmbrd1) encodes a nine-transmembrane
LMBD1 protein. Previous study demonstrated that double allele frameshift mutation
of lmbrd1 is associated with lysosomal cobalamin export deficiency, suggesting the
participation of LMBD1 in the export of cobalamin from lysosome to the cyotsol. In
this study, we have distinguished that heterozygous deletion of lmbrd1 is sufficient
for causing cardiac diseases through a pathway independent of the vitamin B12
metabolic defect. lmbrd1 ubiquitous heterozygous knockout lmbrd1+/- mice
exhibited increase in myocardial glucose uptake and insulin receptor signaling that
were insensitive to the administration of additional insulin. Consistent with the
constitutively activated insulin receptor signaling, lmbrd1+/- mice exhibited an
increase in heart rate and cardiac muscle contractility, leading to the development of
compensated pathological hypertrophy and fibrosis. As lmbrd1+/- mice aged, the
decrease in ejection fraction and fraction shortening showed signs of ventricular
function deterioration. Additional studies using primary ventricular cells
demonstrated that knockdown of lmbrd1 resulted in an elevated signaling of insulin
receptor (IR) and its downstream molecule Akt. Confocal and live total internal
3
reflection fluorescence microscopy showed that LMBD1 colocalized and
co-internalized with clathrin and IR upon insulin induction. Mutagenesis and
phenotypic rescue studies further identified the motifs responsible for assisting the
endocytosis of IR. Altogether, LMBD1 plays a regulatory role in the plasma
membrane as an adaptor protein for insulin receptor endocytosis and modulates the IR
metabolic signaling pathway.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:52:57Z (GMT). No. of bitstreams: 1
ntu-102-F95442025-1.pdf: 5030663 bytes, checksum: e013dea6beea33a8231723e5f867dbf3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 ......................................................................................................................... 1
Abstract ............................................................................................................................ 2
Abbreviation .................................................................................................................... 4
Introduction ..................................................................................................................... 7
Specific Aim .................................................................................................................. 14
Material and Methods .................................................................................................... 15
1.1 Pharmaceuticals ........................................................................................................... 15
1.2 Mouse Model .............................................................................................................. 17
1.3 Cell Lines and Transfection ........................................................................................ 17
1.4 Medium and Reagents ................................................................................................. 18
1.5 Enzymes ...................................................................................................................... 19
1.6 Kits .............................................................................................................................. 19
1.7 Plasmids ...................................................................................................................... 20
1.8 Antibodies ................................................................................................................... 21
1.9 Analytical Equipments and Software .......................................................................... 23
Methods ................................................................................................................ 23
2.1 Restriction Enzyme Digestion ..................................................................................... 23
2.2 Ligation Reaction ........................................................................................................ 23
2.3 Bacterial Transformation ............................................................................................. 24
2.4 Mini/Midi Preparation of Plasmid DNA ..................................................................... 24
2.5 Plasmids Constructions ............................................................................................... 24
2.6 DNA Agarose Gel Electrophoresis ............................................................................. 28
2.7 Primary Ventricular Cardiomyocyte Isolation and NucleofectorTM Transfection ....... 28
2.8 HL-1 and H9C2 Cardiomyocyte Culture and Transfection ........................................ 29
2.9 Protein Extraction from Cultured Cells ....................................................................... 30
ii
2.10 Protein Extraction from Mouse Tissues .................................................................... 30
2.11 Protein Quantification ............................................................................................... 31
2.12 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) .......... 31
2.13 Coomassie Blue Staining .......................................................................................... 32
2.14 Western Blot Analysis ............................................................................................... 33
2.15 Immunoprecipitation Assay ...................................................................................... 33
2.16 Continuous Opti-Prep gradient .................................................................................. 34
2.17 Immunofluorescence Assay ...................................................................................... 35
2.18 Total Internal Reflection Fluorescence Microscopy (TIRF) ..................................... 35
2.19 Surface Biotinylation Assay ...................................................................................... 37
2.20 Flow Cytometry Assay .............................................................................................. 37
2.21 Mouse genotyping ..................................................................................................... 38
2.22 Mouse Blood Sampling ............................................................................................. 38
2.23 Glucose Tolerance Test (GTT) ................................................................................. 39
2.24 Insulin Tolerance Test (ITT) ..................................................................................... 39
2.25 Micro-PET/CT .......................................................................................................... 39
2.26 Cardiac Ultrasound .................................................................................................... 40
2.27 Immunohistochemitry ............................................................................................... 41
Results ........................................................................................................................... 42
Discussion ...................................................................................................................... 54
Tables and Figures ......................................................................................................... 59
Table 1 Mouse heart to body weight ratio in wildtype and lmbrd1+/- mice ...................... 59
Table 2 Mouse blood parameters ...................................................................................... 60
Figure 1 Electrocardiography of the wildtype and lmbrd1+/- mice exhibit distinct pattern.
.......................................................................................................................................... 61
Figure 2 18F-D-glucose (FDG) uptake profile in mice. ..................................................... 62
Figure 3 Myocardial glucose uptake in lmbrd1+/- and wildtype mouse hearts. ................. 63
iii
Figure 4 Glucose and insulin tolerance in wildtype and lmbrd1+/- mice. .......................... 64
Figure 5 LMBD1 regulates cardiac glucose uptake through the IR-PI3K-Akt pathway .. 65
Figure 6 Accumulation of IR in the PM of lmbrd1+/- mouse cardiomyocytes. .................. 66
Figure 7 PM-localized LMBD1 participates in the endocytosis of IR but not TrfR. ........ 67
Figure 8 Knockdown of lmbrd1 results in the retention of IR. ......................................... 68
Figure 9 The participation of LMBD1 in CCV. ................................................................ 69
Figure 10 Putative functional motifs and subcellular localization of LMBD1. ................ 70
Figure 11 LMBD1 co-complexes with AP2 and CHC. ..................................................... 71
Figure 12 LMBD1 specifically interacts with IR. ............................................................. 72
Figure 13 Live TIRF microscopic images of a single molecule movement upon insulin
induction. ........................................................................................................................... 73
Figure 14 YXXΦ and WXXF motifs are critical for the binding of LMBD1 to AP-2. .... 74
Figure 15 lmbrd1+/- mice exhibit cardiac hypertrophy ...................................................... 75
Figure 16 Development of cardiomyopathy in lmbrd1+/- mice. ......................................... 76
Figure 17 lmbrd1+/- mice exhibits cardiac function abnormalty. ...................................... 77
Figure 18 lmbrd1 knockdown cells exhibit an increase in vitmentin expression. ............. 78
Figure 19 Colocalization of LMBRD1 and PTP1B. ......................................................... 79
Figure 20 Effects of LMBD1 knock down on hearts and kidneys of Wt and lmbrd1+/- mice.
.......................................................................................................................................... 80
References ..................................................................................................................... 81
Publication ..................................................................................................................... 90
dc.language.isoen
dc.subject胰島素zh_TW
dc.subject心肌zh_TW
dc.subject細胞訊息zh_TW
dc.subjectInsulin Receptoren
dc.subjectfibrosisen
dc.subjectCardiac hypertrophyen
dc.subjectClathrinen
dc.subjectAP-2en
dc.subjectLMBD1en
dc.subjectLMBRD1en
dc.titleLMBD1 蛋白質於心肌之胰島素訊息調節zh_TW
dc.titleThe role of LMBD1 protein in regulating
cardiac insulin signaling
en
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee林榮耀(Jung-Yaw Lin),嚴仲陽,楊偉勛,陳瑞華,林敬哲
dc.subject.keyword心肌,胰島素,細胞訊息,zh_TW
dc.subject.keywordLMBD1,LMBRD1,Insulin Receptor,AP-2,Clathrin,Cardiac hypertrophy,fibrosis,en
dc.relation.page89
dc.rights.note未授權
dc.date.accepted2013-11-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved