請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16988完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
| dc.contributor.author | Chia-Hung Wu | en |
| dc.contributor.author | 吳佳鴻 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:52:18Z | - |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-12 | |
| dc.identifier.citation | 1. Diane M, et al. β-cell death during progression to diabetes. Nature. 2001;414:792-798. 2. Christopher JR. Type 2 diabetes — a matter of β-cell life and death? Science. 2005;307:380-383. 3. International Diabetes Federation. IDF Diabetes Atlas, 9th edn. Brussels, Belgium: 2019 [cited 2020 Jul 12]. 176 p. Available at: https://www.diabetesatlas.org 4. Edward G, et al. Diabetes and cancer. Diabetes Care. 2010; 33:1674–1685. 5. World Health Organization. WHO report on cancer: setting priorities, investing wisely and providing care for all. Geneva: World Health Organization; 2020 [cited 2020 Jul 12]. 149 p. Available at: https://apps.who.int/iris/handle/10665/330745 6. Shikata K, et al. Diabetes mellitus and cancer risk: review of the epidemiological evidence. Cancer Sci. 2013;104(1):9-14. 7. Gadi S, et al. Type 2 diabetes mellitus and cancer: The role of pharmacotherapy. J Clin Oncol. 2016;34:4261-4269. 8. Yang WS, et al. Association between type 2 diabetes and cancer incidence in Taiwan: data from a prospective community-based cohort study. Acta Diabetol. 2017;54(5):455-461. 9. Hughes DP. Strategies for the targeted delivery of therapeutics for osteosarcoma. Expert Opin Drug Deliv. 2009;6(12):1311-21. 10. Bielack SS, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20(3):776-90. 11. Cheng M, et al. The influence of different glucose concentrations on cellular activity of human osteosarcoma cell line MG63. Sichuan Da Xue Xue Bao Yi Xue Ban. 2008;39(2):239-42. 12. Duo J, et al. Metformin synergistically enhances antitumor activity of histone deacetylase inhibitor trichostatin a against osteosarcoma cell line. DNA Cell Biol. 2013;32(4):156-64. 13. Garofalo C, et al. Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug. PLoS One. 2013;8(12):e83832. 14. Ko Y, et al. Metformin displays in vitro and in vivo antitumor effect against osteosarcoma. Korean J Pediatr. 2016;59(9):374-380. 15. Varun PS, et al. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18:1-14. 16. David P. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity. Cancer Res. 2015;75(10):1925-1929. 17. Bao JM, et al. AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation. Am J Cancer Res. 2015;5(5):1741-50. 18. Azizan N, et al. RAGE maintains high levels of NFkB and oncogenic Kras activity in pancreatic cancer. Biochemical and Biophysical Research Communications. 2017;493:592-597 19. Ahmad S, et al. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin Cancer Biol. 2017;pii: S1044-579X(17)30032-9. 20. Gowri P, Solomon F. Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review. Hormones and Cancer. 2018;9:295–325 21. Boye K, Maelandsmo GM. S100A4 and metastasis: a small actor playing many roles. Am J Pathol. 2010;176(2):528-35. 22. Grotterød I, et al. Signal transduction mechanisms involved in S100A4-induced activation of the transcription factor NF-kappaB. BMC Cancer. 2010;10:241. 23. Kataoka K, et al. S100A7 promotes the migration and invasion of osteosarcoma cells via the receptor for advanced glycation end products. Oncol Lett. 2012;3(5):1149-1153. 24. Zhang Q, et al. Receptor for advanced glycation end-products (RAGE) is overexpressed in human osteosarcoma and promotes the proliferation of osteosarcoma U-2OS cells in vitro. Genet Mol Res. 2016;15(2):gmr.15027817. 25. Alison MR, et al. Cancer stem cells: problems for therapy? J Pathol. 2011;223(2):147-161. 26. Valent P, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12(11):767-75. 27. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275-91. 28. Zuoren Y, et al. Cancer Stem Cells. Int J Biochem Cell Biol. 2012;44(12):2144–2151 29. Reya T, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11. 30. Schilling D, et al. Isolated, disseminated and circulating tumour cells in prostate cancer. Nat Rev Urol. 2012;9(8):448-63. 31. Lathia JD. Cancer stem cells: moving past the controversy. CNS Oncol. 2013;2(6):465-7. 32. Karsten U, Goletz S. What makes cancer stem cell markers different? SpringerPlus. 2013;2:301 33. Harris KS, Kerr BA. Prostate Cancer Stem Cell Markers Drive Progression, Therapeutic Resistance, and Bone Metastasis. Stem Cells Int. 2017;2017:8629234. 34. Yan GN, et al. Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets. Cancer Lett. 2016;370(2):268-74. 35. Han T, et al. Establishment and characterization of a cisplatin‑resistant human osteosarcoma cell line. Oncol Rep. 2014;32(3):1133-1139. 36. Nguyen HA T, et al. Nε-(carboxymethyl)lysine: A review on analytical methods, formation, and occurrence in processed food, and health impact. Food Reviews International. 2014;30:36–52. 37. Menini S, et al. The advanced glycation end-product Nε-carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. J Pathol. 2018;245:197–208 38. Hanbei C, et al. Advanced glycation end products promote ChREBP expression and cell proliferation in liver cancer cells by increasing reactive oxygen species. Medicine. 2017;96:33:e7456 39. Sara J, et al. In vitro Tumorsphere Formation Assays. Bio Protoc. 2013;5;3(3): . 40. Shun YK, et al. Cell migration is regulated by AGE-RAGE interaction in human oral cancer cells in vitro. PLoS ONE. 2014;9(10):e110542. 41. Jingliang Z, et al. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3 cells via the RAGE/NF-κB signaling pathway. International Journal of Oncology. 2018;53:659-671. 42. Goossens S, et al. EMT transcription factors in cancer development re evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 2017;1868:584 591 43. Singh M, et al. EMT: Mechanisms and therapeutic implications. Pharmacology and Therapeutics. 2018;182:80-94. 44. Illam SP, et al. Epithelial Mesenchymal Transition in Cancer Progression: Prev entive Phytochemicals. Recent Pat Anticancer Drug Discov. 2017;12(3):234-246. 45. Zahedi A, et al. Epithelial to mesenchymal transition of A549 lung cancer cells exposed to electronic cigarettes. Lung Cancer. 2018;122: 224 233. 46. Huasheng L. Advanced glycation end products induce proliferation, invasion and epithelial mesenchymal transition of human SW480 colon cancer cells through the PI3K/AKT signaling pathway. ONCOLOGY LETTERS. 2020;19: 3215-3222. 47. Huaming H et al. Diosgenin inhibits the epithelial mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. ONCOLOGY LETTERS. 2019;18: 4278-4287. 48. Zeyu W et al. CEACAM6 is associated with osteosarcoma metastasis and facilitates epithelial–mesenchymal transition in osteosarcoma cells. OncoTargets and Therapy. 2018;11:3159-3166. 49. Romina M, et al. Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases. Oxidative Medicine and Cellular Longevity. 2017;2017:4629495. 50. Richard SJ, et al. Glycogen Synthase Kinase-3 (GSK3): Inflammation, Diseases, and Therapeutics. Neurochem Res. 2007;32:577–595. 51. Ele´onore B, et al. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends in Immunology. 2009;31(1):24-31. 52. Kaimin L, et al. Identification of two potential glycogen synthase kinase 3β inhibitors for the treatment of osteosarcoma. Acta Biochim Biophys Sin. 2018; 50(5):456-464. 53. Romorini L, et al. AKT/GSK3β signaling pathway is critically involved in human pluripotent stem cell survival. Sci. Rep. 2016;6:35660. 54. Preyat N and Leo O. Sirtuin deacylases: a molecular link between metabolism and immunity. JLB. 2013;93:669-680. 55. Mellini P, et al. Sirtuin modulators: an updated patent review (2012-2014). Expert Opin Ther Pat. 2015;25:5-15. 56. Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer. 2015;15(10):608-624. 57. Yuan Z, et al. Suppressive effect of microRNA-138 on the proliferation and invasion of osteosarcoma cells via targeting SIRT1. Exp Ther Med. 2017;13(6):3417-3423. 58. Feng H, et al. Expression of Leptin and Sirtuin-1 is associated with poor prognosis in patients with osteosarcoma. Pathol Res Pract. 2016 Apr;212(4):319-24. 59. Chu F, et al. Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res. 2005;65(22):10183-7. 60. Feng H, et al. The expression of SIRT1 regulates the metastaticplasticity of chondrosarcoma cells by inducing epithelial-mesenchymal transition. Sci Rep. 2017;7:41203. 61. Lin H, et al. Sirtuin 6 contributes to migration and invasion of osteosarcoma cells via the ERK1/2/MMP9 pathway. FEBS Open Bio. 2017;7(9):1291-1301. 62. Bakris GL, et al. Advanced Glycation End-Product Cross-Link Breakers. AJH. 2004; 17:23S–30S 63. Forbes JM, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. DIABETES. 2004;53:1813-1823. 64. Chiu CY, et al. Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. J Pathol. 2016;238:470–482. 65. Szkudelski T. The mechanism of alloxan and streptozotocin action in beta-cells of the rat pancreas. Physiol. Res. 2001;50:536-546. 66. Wolfgang JS, et al. STZ transport and cytotoxicity specific enhancement in GLUT2-expressing cells. DIABETES. 1994;43:1326-1333. 67. Zhiyong W and Helga G. GLUT2 in pancreatic islets crucial target molecule in diabetes induced with multiple low doses of streptozotocin in Mice. DIABETES. 1998;47:50-56. 68. Gerling IC, et al. Multiple low-dose streptozocin-induced diabetes in NOD-scid/scid mice in the absence of functional lymphocytes. Diabetes. 1994;43:433-440. 69. Tian Q, et al. Upregulation of miRNA-154-5p prevents the tumorigenesis of osteosarcoma. Biomedicine Pharmacotherapy. 2020;124:109884. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16988 | - |
| dc.description.abstract | 糖尿病在現今社會當中是常見的慢性疾病,根據國際糖尿病聯合會的預估,在2045年時約有7億的人會得到糖尿病。糖尿病會引發一些併發症像是眼睛病變、心血管疾病、腎臟病變以及可能會增加得到癌症的風險。有許多的流行病學統計指出糖尿病會提高得到癌症的風險並且有實驗證明在糖尿病患者體內較一般人含有較多的糖化最終產物也發現會促進癌症的增生及轉移。雖然已有研究證明糖尿病和癌症的正相關性,不過卻很少有研究去探討糖尿病與骨癌之間的關聯,因此想了解糖化最終產物是否會促進骨癌的惡化。在本實驗所使用的細胞為人類骨肉瘤MG63細胞以及人類軟骨肉瘤JJ012細胞,實驗結果發現雖然糖化最終產物Nε-carboxymethyllysine (CML)並不會影響到骨癌細胞的存活率,不過卻會增加骨癌細胞在懸浮生長形成球體的數目(MG63)或面積(JJ012)而且糖化最終產物的受體(RAGE)以及與癌幹細胞有相關的基因MRP1、MDR1、CD44、ALDH1A1以及NANOG的蛋白表現量以及mRNA的表現量有顯著增加;除此之外,在transwell的實驗中發現CML也會增加骨癌細胞轉移以及侵入的數量,由以上的實驗得知,CML會促進骨癌細胞的惡化情形。 | zh_TW |
| dc.description.abstract | Diabetes mellitus is now common disease with critical impacts on human health. According to the International Diabetes Federation, approximately 700 million people will get diabetes by 2045. Also, diabetes mellitus can cause many complications such as eye disease, cardiovascular disease, kidney failure and cancer. The association of diabetes mellitus and an increased cancer risk have been demonstrated from numerous epidemiological studies. Advanced glycation end products have been investigated to promote proliferation, tumorigenesis and metastasis of cancer cells. Despite there is an evidence of positive correlation between diabetes mellitus and cancer risk, much less attention is paid to link between diabetes mellitus and bone cancer. Therefore, we investigated the role of advanced glycation end products in bone cancer cells. The osteosarcoma, MG63 cells and chondrosarcoma, JJ012 cells were used in this study. Although Nε-carboxymethyllysine (CML) would not change the cell viability in bone cancer cells in a dose-dependent manner (0-100 μM) and time-dependent manner (24-72 h), but increase the sphere number of MG63 cells and the area of JJ012 cells. Also, CML would increase the protein expression of receptor for advanced glycation end products (RAGE) and cancer-stemness associated protein like MRP1, MDR1, CD44, ALDH1A1, and NANOG. Furthermore, in transwell migration and invasion assay, CML could increase the cell migration and invasion numbers and increase the protein expression of epithelial-mesenchymal transition markers in MG63 cells and JJ012 cells. As a result, CML could promote the malignancy of bone cancer cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:52:18Z (GMT). No. of bitstreams: 1 U0001-0708202023002900.pdf: 3284480 bytes, checksum: 020a7547418d639571716c6dcdafe27f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 v 中文摘要 vi Abstract vii List of abbreviation ix Part 1: Introduction 1 1.1 Diabetes mellitus (DM) 1 1.2 Cancer 1 1.3 Bone cancer 4 1.4 Advanced glycation end products (AGEs) 5 1.5 Cancer stem cell 7 Part 2: Aims 9 Part 3: Materials and methods 10 3.1 Cell culture 10 3.2 Establishment of cisplatin-resistant osteosarcoma and chondrosarcoma cell lines 10 3.3 Cell viability assay 11 3.4 Sarcosphere formation assay 11 3.5 Transwell migration and invasion assay 12 3.6 Protein extraction and Western blot analysis 12 3.7 Real time PCR (qPCR) 13 3.8 Statistics 14 Part 4: Results 16 4.1 CML doesn’t change the cell viability but increases the sphere numbers or area in bone cancer cells. 16 4.2 CML increases the protein expression or relative mRNA expression of RAGE, p-NFκB and the expression of cancer-stemness markers in bone cancer cells. 16 4.3 CML increases the numbers of cell migration and invasion in bone cancer cells and impacts the protein expression of epithelial-mesenchymal transition markers. 17 4.4 CML decreases the protein expression of p-AKT or p-GSK3α/β in bone cancer cells. 18 Part 5: Discussion 21 Part 6: Conclusion 25 Part 7: References 26 Part 8: Figures and figure legends 35 Figure 1. CML doesn’t impact the cell viability in bone cancer cells. 35 Figure 2. CML increases the sphere numbers or area in bone cancer cells. 36 Figure 3. CML increases the protein expression of RAGE in bone cancer cells. 37 Figure 4. CML increases the protein expression of cancer-stemness markers in bone cancer cells. 39 Figure 5. CML increases the mRNA expression of cancer-stemness markers in bone cancer cells. 41 Figure 6. CML increases the cell migration in bone cancer cells. 43 Figure 7. CML increases the cell invasion in bone cancer cells. 45 Figure 8. CML impacts the protein expression of EMT markers in bone cancer cells. 47 Figure 9. CML could decrease the protein expression of p-AKT and p-GSK3α/β in bone cancer cells. 49 Figure 10. Establishment of cisplatin-resistant osteosarcoma MG63 cells and chondrosarcoma JJ012 cells. 51 Figure 11. CML doesn’t impact the protein expression of SIRT family in bone cancer cells. 53 Figure 12. ALT-711 could reverse the increased protein expression of RAGE and cancer-stemness markers caused by CML in MG63 cells. 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 糖化最終產物 | zh_TW |
| dc.subject | 癌幹細胞 | zh_TW |
| dc.subject | 糖化最終產物受體 | zh_TW |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | 骨癌 | zh_TW |
| dc.subject | bone cancer | en |
| dc.subject | cancer stem cells | en |
| dc.subject | advanced glycation end products | en |
| dc.subject | diabetes mellitus | en |
| dc.subject | receptor for advanced glycation end products | en |
| dc.title | 探討糖化最終產物羧甲基離氨基酸促進骨癌之惡性及其機制 | zh_TW |
| dc.title | Advanced Glycation End Product Nε-carboxymethyllysine Exerts Malignancy on Bone Tumors via the Activation of Skeletal Cancer Stemness | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0021-0002-4463-9962 | |
| dc.contributor.advisor-orcid | 劉興華(0023-0054-8562-9842) | |
| dc.contributor.oralexamcommittee | 姜至剛(Chih-Kang Chiang),許美鈴(Meei-Ling Sheu),吳鎮天(Cheng-Tien Wu) | |
| dc.contributor.oralexamcommittee-orcid | 姜至剛(5627-5632-8951-9356),許美鈴(5678-8765-5524-9988),吳鎮天(2345-5422-5565-6656) | |
| dc.subject.keyword | 糖尿病,糖化最終產物,糖化最終產物受體,骨癌,癌幹細胞, | zh_TW |
| dc.subject.keyword | diabetes mellitus,advanced glycation end products,receptor for advanced glycation end products,bone cancer,cancer stem cells, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU202002672 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0708202023002900.pdf 未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
