請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16972完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | CHEN-HAN SHIH | en |
| dc.contributor.author | 史承瀚 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:51:23Z | - |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2014-01-17 | |
| dc.identifier.citation | Allnutt FCT, Kyle DJ, Grossman AR, Apt KE (2000) Methods and tools for transformation of eukaryotic algae. United States of America Patent Number 6027900.
Anderson BF, Baker HM, Dodson EJ, Norris GE, Rumball SV, Waters JM (1987) Structure of human lactoferrin at 3.2 A resolution. Proc Natl Acad Sci U S A; 84 :1769–73 Anil Day and Michel Goldschmidt-Clermont (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnology Journal 9, pp. 540–553 Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579 Apt, K. E. and Behrens, P. W. (1999) Commercial developments in microalgal biotechnology. J. Phycol., 35, 215–226 Arnold R.R., Cole M.F., Mcghee J.R. (1977) A bacteri¬cidal effect for human lactoferrin. Science, 197, 263–265. Atkins TW (1998) Biodegradation of poly(ethylene adipate) microcapsules in physiological media. Biomaterials;19:61–7. Brian Miki, Sylvia McHugh. (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. Journal of Biotechnology 107, 193–232 Britigan B. E., Hayek M. B., Doebbeling B. N. and Fick R. B. (1993) Transferrin and lactoferrin undergo proteolytic cleavage in the Pseudomonas aeruginosa- infected lungs of patients with cystic fibrosis. Infect. Immun. 61: 5049–5055. Brock, J. H. (1980) Lactoferrin in human milk: Its role in iron absorption and protection against enteric infection in the newborn infant. Arch. Dis. Child. 55:417–421. Brown LE, Sprecher SL, Keller LR. (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol;11:2328–32. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, et al. (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Sci;240:1534–8. Buchanan MJ, Snell WJ. (1988) Biochemical studies on lysin, a cell wall degrading enzyme released during fertilization in Chlamydomonas. Exp Cell Res;179:181–93. Charles P. Scutt, Elena Zubko, Peter Meyer (2002) Techniques for the removal of marker genes from transgenic plants. Biochimie 84 1119–1126 Chen HL, Li SS, Huang R, Tsai HJ. Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). J Phycol 2008;44:768–76. Chen Y, Wang Y, Sun Y, Zhang L, Li W (2001) Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet ;39:365-70 Chow KC, Tung WL. (1999) Electrotransformation of Chlorella vulgaris. Plant Cell Rep; 18: 778–80. Crosa J.H. (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiological Reviews, 53, 517–530. Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8:2803–2809 Durmaz, Y. (2007) Vitamin E (a-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquacultyre, 272, 717-722. Eitch R.C., Willcox M.D. (1998) Synergic antistaphy¬lococcal properties of lactoferrin and lysozyme. Jour¬nal of Medical Microbiology, 47, 837–842. Ekins A., Khan A.G., Shouldice S.R., Schryvers A.B. (2004) Lactoferrin receptors in gram-negative bacte¬ria: insights into the iron acquisition process. Biomet¬als, 17, 235–243. Elena Zubko, Charles Scutt, and Peter Meyer. (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nature Biotechnology. vol 18. El Sheekh MM. (2000) Stable chloroplast transformation in Chlamydomonas reinhardtii using microprojectile bombardment. Folia Microbiol;45:496–504 European Federation of Biotechnology (2001) Antibiotic resistance markers in genetically modified GM crops. Briefing Paper 10. http://www.efbweb.org/public/pubview.htm (site accessed 12 February 2003) Feng S, Xue L, Liu H, Lu P. (2009) Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol Bio Rep; 36: 1433–9. Fernandez E, Schnell R, Ranum LP, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 86:6449–6453 Fischer, N., Stampacchia, O., Redding, K. and Rochaix, J.D. (1996) Selectable marker recycling in the chloroplast. Mol. Gen. Genet. 251, 373–380. Geng DG, Han Y, Wang YQ, Wang P, Zhang LM, Li WB. (2004) Construction of a system for the stable expression of foreign genes in Dunaliella salina. Acta Bot Sin; 46: 342–6. Guillard, R.R.L. (1975) Culture of Phytoplankton for feeding marine invertebrates. In: W.L. Smith and M. H. Chanley, eds., Culture of marine invertebrate animals. pp.29-60, Plenum Book Publ. Corp., New York. Hall, L.M. et al. (1993) Expression of a foreign gene in Chlamydomonas reinhardtii. Gene 124, 75–81 Haversen L. A., Engberg I., Baltzer L., Dolphin G., Hanson L. A. and Mattsby-Baltzer I. (2000) Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infections in mice. Infect. Immun. 68: 5816–5823. Hibberd, D. J. (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot. J. Linn. Soc. 82, 93–99. Hyams, J., and D. R. Davies. (1972) The induction and characterization of cell wall mutants of Chlamydomonas reinhardtii. Mutat. Res. 14:381-389 Isamida T., Tanaka T., Omata Y., Yamauchi K., Shimazaki K. and Saito A. (1998) Protective effect of lactoferricin against Toxoplasma gondii infection in mice. J. Vet. Med. Sci. 60:241–244. Jae-SUNG KIM, Michael B. ELLMAN, DONHYAO YAN, HOWARD S, Ranjan Kc, Xin Li, Di Chen, Guozhi Xiao, Gabriella Cs-Zabo, David W. Hoskin, D.D. Buechter (2011) Lactoferricin mediates Anti-Inflammatory and Anti-Catabolic Effects via Inhibition of IL-1 and LPS Activity in the Intervertebral Disc. Journal of Cellular Physiology, DOI 10.1002, jcp.24350 Kirkpatrick C.H., Green I., Rich R.R., Schade A.I. (1971) Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mech¬anisms in chronic mucocutaneous candidiasis. The Journal of Infectious Diseases, 124, 539–544. Kowarik and Ingo (2003) Human Agency in Biological Invasions: Secondary Releases Foster Naturalisation and Population Expansion of Alien Plant Species. Biological Invasions, Volume 5, Number 4, December, pp. 293-312(20) Kropat, J., Oster, U., Rudiger, W., and Beck, C.F. (1997). Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc. Natl. Acad. Sci. USA 94: 14168–14172. Kropat, J., Oster, U., Rudiger, W., and Beck, C.F. (2000). Chloroplast signaling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J. 24: 523–531. Kuwata H., Yip T., Tomita M. and Hutchens T. W. (1998) Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin. Biochim. Biophys. Acta 1429: 129–141 K. Yamauchi, M. Tomita, T. J. Giehl, and R. T. Ellison. (1993) Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment,” Infection and Immunity, vol. 61, no. 2, pp. 719–728 L. Adlerova, A. Bartoskova, M. Faldyna. (2008) Lactoferrin: a review. Veterinarni Medicina, 53, 9, 457–468. Laurence Meslet-Cladiere and Olivier Vallon (2011) Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryotic Cell doi:10.1128/EC.05043-11 Li SS, Tsai HJ. (2009) Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol;26:316–25 Maria Elisa Drago-Serrano, Mireya de la Garza-Amaya, Jesus Serrano Luna, Rafael Campos-Rodriguez. (2012) Lactoferrin lipopolysaccharide (LPS) binding as key to antibacterial and antiendotoxic effects. International Immunopharmacology 12, 1–9 Mayfield SP, Kindle KL. (1990) Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci USA;87:2087–91. Metz-Boutique M.H., Jolles J., Mazurier J., Schoentgen F., Legrand D., Spik G., Montreuil J., Jolles P. (1984) Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Euro¬pean Journal of Biochemistry, 145, 659–676. Nelson, J. A., P. B. Savereide, and P. A. Lefebvre. 1994. The CRY1 gene in Chlamydomonas 559 reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol.Cell Biol. 560 14:4011-4019. Newman, S.M., Boynton, J.E., Gillham, N.W., Randolph-Anderson, B.L., Johnson, A.M. and Harris, E.H. (1990) Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics, 126, 875–888. Nicholas D. Embleton, Janet E. Berrington, William McGuire, Chris J. Stewart, Stephen P. Cummings (2013) Lactoferrin: Antimicrobial activity and therapeutic potential. Seminars in Fetal & Neonatal Medicine, doi: 10.1016/ j.siny.2013.02.001. N. Orsi. (2004) Theantimicrobial activity of lactoferrin: current status and perspectives. BioMetals, vol. 17, no. 3, pp. 189–196. Oliver Kiliana, Christina S. E. Benemanna, Krishna K. Niyogib and Bertrand Vicka (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. PNAS 108, no. 52, 21265–21269 Peter D. Hare and Nam-Hai Chua. (2002) Excision of selectable marker genes from transgenic plants. Nature biotechnology; 20. Philippe B Gay and Stephen H Gillespie (2005) Antibiotic resistance markers in genetically modified plants: a risk to human health? The LANCET Infectious Disease Volume 5, Issue 10, October 2005, Pages 637–646 P. L.Masson, J. F. Heremans, and J. Ferin. (1968) Presence of an Ironbinding protein (lactoferrin) in the genital tract of the human female. I. Its immunohistochemical localization in the endometrium. Fertility and Sterility, vol. 19, no. 5, pp. 679–689 P. L.Masson, J. F. Heremans, and E. Schonne. (1969) Lactoferrin, an iron-binding protein in neutrophilic leukocytes. The Journal of Experimental Medicine, vol. 130, no. 3, pp. 643–658. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Jeffrey L. Broore and Matthew C. Posewitz (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 2012; 3:686; PMID:22353717. Ratledge C., Dover I.G. (2000) Iron metabolism in pathogenic bacteria. Annual Review of Microbiology, 54, 881–941. Robin J. Shields and Ingrid Lupatsch. (2012) Algae for Aquaculture and Animal Feeds. Technikfolgenabschatzung – Theorie und Praxis 21. Jg., Heft 1. Schroda M, Blocker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J ;21:121–31. Schryvers A.B., Bonnah R., Yu R.H., Wong H., Retzer M. (1998) Bacterial lactoferrin receptors. Advances in Ex¬perimental Medicine and Biology, 443, 123–133. Scott Franklin, Binh Ngo, Ekem Efuet and Stephen P. (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. The Plant Journal; 30; 6; 733-744. Sizova, I. et al. (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277, 221–229. Sorensen M., Sorensen S.P.L. (1939) The proteins in whey. Comptes-rendus des Travaux du Laboratoire Carlsberg, 23, 55–99. Srivastava, V., Anderson, O.D., Ow, D.W. (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. U.S.A. 96, 11117– 11121. Stevens, D.R. et al. (1996) The bacterial phleomycin resistance gene ble as a dominant selectablemarker in Chlamydomonas. Mol. Gen. Genet. 251, 23–30. Sukenik, A., Wahnon, R., (1991). Biochemical quality of marine unicellular algae with special emphasis on lipid composition : I. Isochrysis galbana. Aquaculture 97 (1), 61-72. Sun GH, Zhang XC, Sui ZH, Mao YX. (2008) Inhibition of pds gene expression via the RNA interference approach in Dunaliella salina (Chlorophyta). Marine Biotechnol; 10: 219–26. Sun Y, Gao XS, Li QY, Zhang QQ, Xu ZK. (2006) Functional complementation of a nitrate reductase defective mutant of a green alga Dunaliella viridis by introducing the nitrate reductase gene. Gene; 377: 140–9. Sun Y, Yang Z, Gao X, Li Q, Zhang Q, Xu Z. (2005) Expression of foreign genes in Dunaliella by electroporation. Mol Biotechnol; 30:185–92. Tara L.Walker. (2003) The development of microalgae as a bioreactor system for the production of recombinant protein. Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61: 15–24. Valenti P., Antonini G. (2005) Lactoferrin: an important host defense against microbial and viral attack. Cel¬lular and Molecular Life Sciences, 62, 2576–2587. Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol 29(1):69–78. W. Bellamy, H. Wakabayashi, M. Takase, K. Kawase, S. Shimamura, and M. Tomita (1993) Killing of Candida albicans by actoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin,” Medical Microbiology and Immunology, vol. 182, no. 2, pp. 97–105. Walker TL, Becker DK, Dale JL, Collet C. (2005) Towards the development of a nuclear transformation system for Dunaliella tertiolecta. J Appl Phycol; 17: 363–8. Wang C, Wang Y, Su Q, Gao X. (2007) Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp. MACC/C95, via electroporation. Biotechnol Bioprocess Eng;12:180–3. Wang TY, Xue LX, Hou WH, Yang BS, Chai YR, Ji XA. (2007) Increased expression of transgene in stably transformed cells of Dunaliella salina by matrix attachment regions. Appl Microbiol Biotechnol; 76: 651–7. Yamauchi K., Tomita M., Giehl T.J., Ellison R.T. (1993) Antibacterial activity of lactoferrin and pepsin-derived lactoferrin peptide fragment. Infection and Immunity, 61, 719–728. Yamaguchi, K. (1997) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J. Appl. Phycol., 8, 487–502. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16972 | - |
| dc.description.abstract | 擬球藻為水產養殖產業中的重要光合自營藻類,常用於魚幼苗之活餌飼料。本實驗室於2009年時,已先行研究利用具有抗菌能力之牛乳鐵蛋白(LFB),融合紅色螢光蛋白(DsRed)此報導基因作為篩選標記,選殖含牛乳鐵蛋白之擬球藻轉殖藻株。然而,利用紅色螢光蛋白選殖時,總共需時約兩個月才可進行篩選,且此紅螢光訊號亦會受到轉殖細胞所含有的內生性紅螢光干擾,進而影響選殖結果,因此本研究決定重新選擇新的篩選標記解決上述紅螢光蛋白作為篩選標記之缺點,使用了從地毯海葵(Stichodacyla haddoni)中,所分離出的紫色色澤蛋白(shCP),作為新一代的篩選標記,用以篩選擬球藻轉殖藻株。此研究中我們利用熱誘導型啟動子開啟下游shCP cDNA紫色色澤蛋白之表現,由於擬球藻轉殖藻株所表達之外源紫色色澤蛋白會與其內生性綠色之葉綠體彼此參雜,因而造成轉殖藻株呈現與綠色野生型藻株迥然不同之深褐色色澤。本實驗研究中我們證明shCP色澤蛋白為相當理想、快速,成本低廉的篩選標記,藉由其色澤特性,可有效地幫助研究人員以肉眼辨識之方式辨認並分離出轉殖藻株。此外,我們亦利用shCP此篩選標記建構出一新表現質體,此質體將六段重複之乳鐵蛋白序列與shCP篩選標記接合,並轉殖至擬球藻藻株中,於三個星期後成功地利用shCP篩選標記,篩選並分離出含有六段重複之乳鐵蛋白序列與shCP融合序列之轉殖藻株,後續實驗中我們亦證明該轉殖藻株具有抗微生物活性(antimicrobial activities),證明shCP篩選標記不會影響乳鐵蛋白此功能性蛋白之功能,且shCP以及LFB為生物可分解蛋白(biodegradable),具有環境生物安全性,因此可降低含抗菌基因之微生物之生成,並減少抗菌基因擴散到環境中,進而降低對環境生態所帶來之影響、衝擊。 | zh_TW |
| dc.description.abstract | Nannochloropsis oculata is an essential photoautotrophic microalgae used commonly as live feed for fish larvae in aquaculture. Previously we have been developed and isolated a transgenic line of N. oculata harboring antimicrobial peptide such as bovine lactoferricin (LFB) fused a red fluorescent protein (DsRed) served as selection marker. However, it takes two months to observe the appearance of DsRed reporter and DsRed is disturbed by the endogenous fluorescence of the host chloroplasts. Moreover, the fluorescent microscope is required to be equipped. To solve these disadvantages for screening the genetically engineered microalgae, new selection marker is needed. In this study, we used the purple chromoprotein (CP) isolated from Stichodacyla haddoni to serve as an effective selection marker to screen the transgenic colonies of N. oculata. The expression of S. haddoni purple chromoprotein (shCP) cDNA was controlled by an inducible promoter. Since the expressed shCP was mixed with the endogenous green chloroplasts of N. oculata, dark brown color was display in transformants. We demonstrated that shCP reporter is a reliable, rapid and cheap approach which enables to identify and isolate transgenic cells. Furthermore, we also developed an expression plasmid, in which shCP reporter gene was fused with six repeats of LFB cDNA, and transferred into microalgae. After we successfully screened and isolated a transgenic line of N. oculata harboring shCP fused with LFB within three weeks, we proved that this variety had antimicrobial activity, resulting in greatly increasing the survival rate of fish infected with bacterial pathogens. Using transgenic N. oculata containing LFB should reduce the antibiotic usage in aquaculture industry. Importantly, since shCP and LFB proteins are biodegradable and originates from marine organism, it is considered as a biological and environmental safety, which should also substantially reduce the public concern related to generate antimicrobial-resistant bacteria and resistance genes to the environment and thus bring ecology impact. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:51:23Z (GMT). No. of bitstreams: 1 ntu-102-R00b43018-1.pdf: 2684799 bytes, checksum: f606f497d1c2650941966ab604a7460d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 1
Abstract 2 Literature review 4 Introduction 14 Material and methods 18 Results 24 Discussion 29 Reference 36 Figure legends 52 Table 58 Appendix I 59 Appendix II 60 | |
| dc.language.iso | en | |
| dc.subject | 牛乳鐵蛋白 | zh_TW |
| dc.subject | 微細藻 | zh_TW |
| dc.subject | 擬球藻 | zh_TW |
| dc.subject | 地毯海葵 | zh_TW |
| dc.subject | 篩選標記 | zh_TW |
| dc.subject | 色澤蛋白 | zh_TW |
| dc.subject | Electroporation | en |
| dc.subject | Microalgae | en |
| dc.subject | Stichodacyla haddoni | en |
| dc.subject | Bovine lacferrincin | en |
| dc.subject | Chromoprotein | en |
| dc.subject | Nannochlorosis Oculata | en |
| dc.subject | Selective marker | en |
| dc.title | 以色澤蛋白作為微細藻基因轉殖之新穎篩選標記 | zh_TW |
| dc.title | Nuclear transformation of Nannochloropsis Oculata by using
chromoprotein as a new selection marker | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳衍昌(Yean-Chang Chen),蘇睿智(Ruey-Chih Su),蕭世民(Shyh-Min Tom Hsiao) | |
| dc.subject.keyword | 微細藻,擬球藻,地毯海葵,篩選標記,色澤蛋白,牛乳鐵蛋白, | zh_TW |
| dc.subject.keyword | Microalgae,Nannochlorosis Oculata,Stichodacyla haddoni,Electroporation,Selective marker,Chromoprotein,Bovine lacferrincin, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-01-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
