請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16936完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Shih-Hao Hsu | en |
| dc.contributor.author | 許世豪 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:50:18Z | - |
| dc.date.copyright | 2014-03-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-07 | |
| dc.identifier.citation | [1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
[2] M. Julliere, Phys. Lett. A 54, 225 (1975). [3] Z. H. Xiong, Di Wu, Z. Valy Vardeny and Jing Shi, Nature 427, 821 (2004). [4] Kai-Shin Li, Yin-Ming Chang, Santhanam Agilan, Jhen-Yong Hong, Jung-Chi Tai, Wen-Chung Chiang, Keisuke Fukutani, P. A. Dowben, and Minn-Tsong Lin, Phys. Rev. B 83, 172404 (2011). [5] S. Sanvito, Nature Physics 6, 562 (2010). [6] Jens Brede, Nicolae Atodiresei, Stefan Kuck, Predrag Lazic, Vasile Caciuc, Yoshitada Morikawa, Germar Hoffmann, Stefan Blugel, and Roland Wiesendanger, Phys. Rev. Lett. 105, 047204 (2010). [7] T. R. Umbach, M. Bernien, C. F. Hermanns, A. Kruger, V. Sessi, I. Fernandez-Torrente, P. Stoll, J. I. Pascual, K. J. Franke, and W. Kuch, Phys. Rev. Lett. 109, 267107 (2012). [8] N. Abdurakhmanova, T.-C. Tseng, A. Langner, C. S. Kley, V. Sessi, S. Stepanow, and K. Kern, Phys. Rev. Lett. 110, 027202 (2013). [9] Lu Wang, Xingfa Gao, Xin Yan, Jing Zhou, Zhengxiang Gao, Shigeru Nagase, Stefano Sanvito, Yutaka Maeda, Takeshi Akasaka, Wai Ning Mei, and Jing Lu, J. Phys. Chem. C 114, 21893 (2010). [10] C. Morari, H. Allmaier, F. Beiuseanu, T. Jurcut, and L. Chioncel, Phys. Rev. B 85, 085413 (2012). [11] Nicoleta Nicoara , Elisa Roman , Jose M. Gomez-Rodriguez, Jose A. Martin-Gago, Javier Mendez, Organic Electronics 7, 287 (2006). [12] J. Mendez, R. Caillard, G. Otero, N. Nicoara, J. A. Martin-Gago, Advanced Materials 18, 2058 (2006). [13] Lucıa Alvarez, Samuel Pelaez, Renaud Caillard, Pedro A Serena, Jose A. Martin-Gago and Javier Mendez, Nanotechnology 21, 305703 (2010). [14] V. Fock, Z. Phys. 61, 126 (1930). [15] J. Kohanoff, ”Electronic Structure Calculations for Solids and Molecules: theory and Computational Methods”, Cambridge University Press, (2006). [16] L. H. Thomas, Proc. Cambridge Phil. Roy. Soc. 23, 542 (1927). [17] E. Fermi, Rend. Accad. Naz. Lincei 6, 602 (1927). [18] R. M. martin, ”Electronic Structure: Basic Theory and Practical Methods”, Cambridge University Press, (2004). [19] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). [20] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). [21] K. Capelle, arXiv:cond-mat/0211443v5, (2006). [22] D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983). [23] S. Goedecker, M. Teter and J Hutter, Phys. Rev. B 54, 1703 (1996). [24] J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). [25] J.P. Perdew, Phys. Rev. B 33, 8822 (1986). [26] J. F. Dobson, and J. Wang, Phys. Rev. Lett. 82, 2123 (1999). [27] H. Rydberg, B. I. Lundqvist, D. C. Langrethand and M. Dion, Phys. Rev. B 62, 6997 (2000). [28] H. Rydberg, M. Dion, N. Jacobson, E. Schroder, P. Hyldgaard, S. I. Simak, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett. 91, 126402 (2003). [29] M. Dion, H. Rydberg, E. Schroder, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). [30] S. Grimme, J. Comput. Chem. 27, 1787 (2006). [31] Incenzo Barone, Maurizio Casarin, Daniel Forrer, Michele Pavone, Mauro Sambi, Andrea Vittadini, J. Comput. Chem. 30, 934 (2009). [32] M. Getzlaff, ”Fundamentals of Magnetism”, Springer, (2008). [33] G. Long , R. D. Willett, Inorg. Chim. Acta, 313 1 (2001). [34] E. Ruiz, A. Rodr’ıguez-Fortea and S. Alvarez, Inorg. Chem., 42 4881 (2003). [35] Francesca Nunzi, Eliseo Ruiz, Joan Cano and Santiago Alvarez, J. Phys. Chem., 111 618 (2007). [36] V. Bellini, G. Lorusso, A. Candini, W. Wernsdorfer, T. B. Faust, G. A. Timco, R. E. P. Winpenny and M. Affronte, Phys. Rev. Lett., 106 227205 (2011). [37] Chiung-Yuan Lin and B. A. Jones, Phys. Rev. B, 83 014413 (2011). [38] Chiung-Yuan Lin, Jheng-Lian Li, Yao-Hsien Hsieh, Keng-Liang Ou, and B. A. Jones, Phys. Rev. X, 2 021012 (2012). [39] M. A. Ruderman and C. Kittel, Phys. Rev., 96 99 (1954). [40] T. Kasuya, Theor. Phys., 16 45 (1956). [41] K. Yosida, Phys. Rev., 106 893 (1957). [42] Stefan Schmaus, Alexei Bagrets, Yasmine Nahas, Toyo K. Yamada, Annika Bork, Martin Bowen, Eric Beaurepaire, Ferdinand Evers and Wulf Wulfhekel, Nature Nanotechnology, 6 185 (2011). [43] D. E. Richardson and H. Taube, J. Am. Chem. Soc., 105 40 (1983). [44] V. Marvaud, J. P. Launay, and C. Joachim, Chem. Phys., 177 23 (1993). [45] T. H. Yang, Master Thesis, Department of Physics, National Taiwan University (2012). [46] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. deGironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009) http://arxiv.org/abs/0906.2569 [47] T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D. C. Langreth, Phys. Rev. B 76, 125112 (2007). [48] G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009). [49] L. Romaner, D. Nabok, P. Puschnig, E. Zojer and C. Ambrosch-Drax, New J. Phys. 11, 053010 (2009). [50] M. Mura, A. Gulans, T. Thonhauser and L. Kantorovich, Phys. Chem. Chem. Phys. 12, 4759 (2010). [51] Madhura Marathe, Jerome Lagoute, Vincent Repain, Sylvie Rousset, Shobhana Narasimhan, Surface Science 606, 950 (2012). [52] Wei Fan, Xin-Gao Gong, arXiv:cond-mat/0407746v3, (2007). [53] S. D. Kevan and R. H. Gaylord, Phys. Rev. B 36, 5809 (1987). [54] M. Hoesch, M. Muntwiler, V. N. Petrov, M. Hengsberger, L. Patthey, M. Shi, M. Falub, T. Greber, and J. Osterwalder, Phys. Rev. B 69, 241401 (2004). [55] F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hufner, Phys. Rev. B 63, 115415 (2001). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16936 | - |
| dc.description.abstract | 鐵原子與苝四甲酸二酐分子能在金(111)表面自組裝形成數十奈米長的奈米線,具有分子自旋電子元件的應用潛力。在這篇研究中,我們以第一原理探究包含與不包含金基板的鐵-苝四甲酸二酐奈米線的幾何結構、電子結構與磁性性質。
根據鐵-苝四甲酸二酐奈米線的幾何結構,此奈米線有四種自旋組態,且其自旋組態─亦即磁性─將直接影響其電子結構。因為受限於鐵原子的吸附部位,鐵-苝四甲酸二酐奈米線在金(111)表面上的單位晶格長度將決定於金(111)的表面單位晶格長度,而在結構最佳化之後,鐵-苝四甲酸二酐在金(111)表面上形成了彎曲的奈米線。因為此結構上的變化,參與和苝四甲酸二酐分子軌域混成的鐵原子軌域變得與自由懸浮的平面奈米線不同,其基態自旋組態也因此在吸附之後產生變化。總結而言,奈米線的幾何結構對其磁性有決定性的影響。 另外,藉由海森堡模型(Heisenberg Model),我們估算了鐵原子電子自旋通過非局域化分子軌道或表面RKKY效應耦合的強度。在平面自由懸浮鐵-苝四甲酸二酐奈米線中,通過分子軌域的自旋耦合皆將鐵原子電子自旋平行排列,而在彎曲的奈米線中,鐵原子電子自旋則傾向反平行排列。自旋耦合隨著幾何結構的改變同樣可以歸因於混成的改變。最後,經由估算RKKY效應在金(111)表面的耦合強度,我們發現,在金(111)上的鐵-苝四甲酸二酐奈米線中,非局域化的分子軌域是自旋耦合的主要途徑。 | zh_TW |
| dc.description.abstract | Self-assembled Fe-PTCDA complexes on Au(111) surface can form very long nanowires which have promising properties for molecular spintronics. In this work, we explore the geometries, electronic structures and magnetic properties of Fe-PTCDA nanowires, with and without the Au substrate, using density functional theory calculations. Based on the geometries of Fe-PTCDA nanowires, there are 4 types of spin configurations, and the electronic structures are strongly dependent on the spin configurations, i.e. the magnetism. On the geometry, the free-standing Fe-PTCDA nanowires are planar and the Fe-PTCDA nanowires on Au(111) become bent after adsorption. Moreover, because the Fe orbitals involved in the hybridization in the bent nanowires are different from the ones in the planar free-standing nanowires, the ground state spin configuration is changed after adsorption. As a conclusion, the geometry is critical for the magnetism of the Fe-PTCDA nanowires. In addition, the strength of spin couplings between Fe atoms, through delocalized molecular orbitals or substrate RKKY coupling, is estimated by using the Heisenberg model. In the planar free-standing nanowires, the couplings through the molecular orbitals align the spins parallel, while in the bent nanowires, the spins are aligned antiparallel. The changes of the spin couplings can be attributed to the change of hybridizations. Finally, by estimating the RKKY interaction on Au(111) surface, the couplings through the molecular orbitals are found to be dominant in the adsorbed Fe-PTCDA nanowires. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:50:18Z (GMT). No. of bitstreams: 1 ntu-103-R01245003-1.pdf: 4533495 bytes, checksum: 2d9509d3af5ee642c5547b2c1c1bec13 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Density Functional Theory 3 2.1 Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Kohn-ShamEquations . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Exchange-Correlation Functionals . . . . . . . . . . . . . . . . . . . . 9 2.4 Van derWaals Interaction . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Concepts of Spin Couplings 12 3.1 Direct Exchange Coupling . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 HeisenbergModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 RKKY Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Spin Communication through π-ConjugatedMolecules . . . . . . . . 15 4 Descriptions of Fe-PTCDA Nanowires 17 4.1 Spin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Systems and Structural Optimizations . . . . . . . . . . . . . . . . . 19 4.2.1 Free Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.2 Whole System . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.3 Bent Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Molecular Orbitals of Isolated PTCDA Molecules . . . . . . . . . . . 21 5 Electronic Structures and Magnetic Properties 23 5.1 Spin-Configuration-Dependence of Electronic Structures . . . . . . . . 23 5.2 Effect of Geometry on the Ground State Spin Configurations . . . . . 26 5.3 Influence of the Substrate . . . . . . . . . . . . . . . . . . . . . . . . 30 5.4 Model of Spin Couplings . . . . . . . . . . . . . . . . . . . . . . . . . 32 6 Conclusions 39 Bibliography 42 | |
| dc.language.iso | en | |
| dc.subject | 金屬-有機介面 | zh_TW |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 分子自旋電子學 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | ?四甲酸二酐 | zh_TW |
| dc.subject | 自旋耦合 | zh_TW |
| dc.subject | 海森堡模型 | zh_TW |
| dc.subject | RKKY效應 | zh_TW |
| dc.subject | spin coupling | en |
| dc.subject | RKKY interaction | en |
| dc.subject | Heisenberg Model | en |
| dc.subject | density functional theory | en |
| dc.subject | molecular spintronics | en |
| dc.subject | metal-organic | en |
| dc.subject | nanowire | en |
| dc.subject | PTCDA | en |
| dc.subject | spin communication | en |
| dc.title | 模擬研究自組裝鐵-苝四甲酸二酐分子奈米線之自旋耦合 | zh_TW |
| dc.title | Computational Modeling of Spin Couplings in Self-Assembled Fe-PTCDA Molecular Nanowires | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 關肇正(Chao-Cheng Kaun) | |
| dc.contributor.oralexamcommittee | 周美吟(Mei-Yin Chou),魏金明(Ching-Ming Wei) | |
| dc.subject.keyword | 密度泛函理論,分子自旋電子學,金屬-有機介面,奈米線,?四甲酸二酐,自旋耦合,海森堡模型,RKKY效應, | zh_TW |
| dc.subject.keyword | density functional theory,molecular spintronics,metal-organic,nanowire,PTCDA,spin coupling,spin communication,Heisenberg Model,RKKY interaction, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-02-10 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
